COVID-19 Tweet Analysis using Hybrid Keyword Extraction Approach

Sakshi Vatsa, S. Mathur, Mansi Garg, Rajni Jindal
{"title":"COVID-19 Tweet Analysis using Hybrid Keyword Extraction Approach","authors":"Sakshi Vatsa, S. Mathur, Mansi Garg, Rajni Jindal","doi":"10.1109/CSNT51715.2021.9509636","DOIUrl":null,"url":null,"abstract":"Aim of this paper is to identify the key issues discussed among the people on Twitter using machine learning and NLP techniques regarding COVID-19. One of the most important way to produce these insights is Automatic Keyword Extraction. It is a method to obtain the most important words from the text by summarizing thus providing an insight into the whole context. Text Summarization is the process to condense the content without the loss of significant data. This paper applies a hybrid model of graph-based and topic modeling approaches to extract keywords from a large dataset of approximately 1 million tweets.","PeriodicalId":122176,"journal":{"name":"2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th IEEE International Conference on Communication Systems and Network Technologies (CSNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNT51715.2021.9509636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aim of this paper is to identify the key issues discussed among the people on Twitter using machine learning and NLP techniques regarding COVID-19. One of the most important way to produce these insights is Automatic Keyword Extraction. It is a method to obtain the most important words from the text by summarizing thus providing an insight into the whole context. Text Summarization is the process to condense the content without the loss of significant data. This paper applies a hybrid model of graph-based and topic modeling approaches to extract keywords from a large dataset of approximately 1 million tweets.
使用混合关键字提取方法分析COVID-19推文
本文的目的是利用机器学习和NLP技术确定Twitter上关于COVID-19的人们讨论的关键问题。产生这些见解的最重要的方法之一是自动关键字提取。这是一种通过总结从文本中获得最重要的单词,从而提供对整个上下文的洞察力的方法。文本摘要是在不丢失重要数据的情况下精简内容的过程。本文采用基于图和主题建模方法的混合模型,从大约100万条tweet的大型数据集中提取关键字。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信