Automatic estimation of the noise level function for adaptive blind denoising

Camille Sutour, Jean-François Aujol, C. Deledalle
{"title":"Automatic estimation of the noise level function for adaptive blind denoising","authors":"Camille Sutour, Jean-François Aujol, C. Deledalle","doi":"10.1109/EUSIPCO.2016.7760213","DOIUrl":null,"url":null,"abstract":"Image denoising is a fundamental problem in image processing and many powerful algorithms have been developed. However, they often rely on the knowledge of the noise distribution and its parameters. We propose a fully blind denoising method that first estimates the noise level function then uses this estimation for automatic denoising. First we perform the nonparametric detection of homogeneous image regions in order to compute a scatterplot of the noise statistics, then we estimate the noise level function with the least absolute deviation estimator. The noise level function parameters are then directly re-injected into an adaptive denoising algorithm based on the non-local means with no prior model fitting. Results show the performance of the noise estimation and denoising methods, and we provide a robust blind denoising tool.","PeriodicalId":127068,"journal":{"name":"2016 24th European Signal Processing Conference (EUSIPCO)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2016.7760213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Image denoising is a fundamental problem in image processing and many powerful algorithms have been developed. However, they often rely on the knowledge of the noise distribution and its parameters. We propose a fully blind denoising method that first estimates the noise level function then uses this estimation for automatic denoising. First we perform the nonparametric detection of homogeneous image regions in order to compute a scatterplot of the noise statistics, then we estimate the noise level function with the least absolute deviation estimator. The noise level function parameters are then directly re-injected into an adaptive denoising algorithm based on the non-local means with no prior model fitting. Results show the performance of the noise estimation and denoising methods, and we provide a robust blind denoising tool.
自适应盲去噪的噪声级自动估计函数
图像去噪是图像处理中的一个基本问题,已经开发出许多强大的算法。然而,它们往往依赖于对噪声分布及其参数的了解。我们提出了一种全盲去噪方法,该方法首先估计噪声水平函数,然后使用该估计进行自动去噪。首先对均匀图像区域进行非参数检测,计算噪声统计量的散点图,然后用最小绝对偏差估计量估计噪声水平函数。然后将噪声级函数参数直接重新注入到基于非局部均值的自适应去噪算法中,无需预先模型拟合。实验结果表明了噪声估计和去噪方法的有效性,并提供了一种鲁棒的盲去噪工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信