Optimizing Berth Allocation by an Artificial Fish Swarm Algorithm

Yun Cai, Y. Huo, Mengting Yu
{"title":"Optimizing Berth Allocation by an Artificial Fish Swarm Algorithm","authors":"Yun Cai, Y. Huo, Mengting Yu","doi":"10.1109/LEITS.2010.5664929","DOIUrl":null,"url":null,"abstract":"In order to improve operation efficiency and customer satisfaction and to minimize the turnaround time of vessels at container terminals, a berth allocation problem (BAP) was formulated. An adaptive artificial fish swarm algorithm (AFSA) was proposed to solve it. Firstly, the basic principle and the algorithm design of the AFSA were introduced. Then, for a test case, computational experiments explored the effect of algorithm parameters on the convergence of the algorithm. Experimental results show that the algorithm has better convergence performance than genetic algorithm (GA) and ant colony optimization (ACO). The improved algorithm with rational parameters can effectively solve the BAP.","PeriodicalId":173716,"journal":{"name":"2010 International Conference on Logistics Engineering and Intelligent Transportation Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Logistics Engineering and Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LEITS.2010.5664929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In order to improve operation efficiency and customer satisfaction and to minimize the turnaround time of vessels at container terminals, a berth allocation problem (BAP) was formulated. An adaptive artificial fish swarm algorithm (AFSA) was proposed to solve it. Firstly, the basic principle and the algorithm design of the AFSA were introduced. Then, for a test case, computational experiments explored the effect of algorithm parameters on the convergence of the algorithm. Experimental results show that the algorithm has better convergence performance than genetic algorithm (GA) and ant colony optimization (ACO). The improved algorithm with rational parameters can effectively solve the BAP.
基于人工鱼群算法的泊位优化分配
为了提高集装箱码头的作业效率和客户满意度,并最大限度地缩短船舶在集装箱码头的周转时间,提出了泊位分配问题。为此,提出了一种自适应人工鱼群算法(AFSA)。首先,介绍了AFSA的基本原理和算法设计。然后,以测试用例为例,通过计算实验探讨了算法参数对算法收敛性的影响。实验结果表明,该算法比遗传算法(GA)和蚁群算法(ACO)具有更好的收敛性能。改进后的算法参数合理,能有效地解决BAP问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信