MLE Evolution Equation for Fractional Diffusions and Berry-Esseen Inequality of Stochastic Gradient Descent Algorithm for American Option

J. Bishwal
{"title":"MLE Evolution Equation for Fractional Diffusions and Berry-Esseen Inequality of Stochastic Gradient Descent Algorithm for American Option","authors":"J. Bishwal","doi":"10.28924/ada/stat.2.13","DOIUrl":null,"url":null,"abstract":"We study recursive parameter estimation in fractional diffusion processes. First, stability and asymptotic properties of the global maximum likelihood estimator (MLE) of the drift parameter are obtained under some regularity conditions. Then we obtain an evolution equation for the MLE of the drift parameter in nonhomogeneous fractional stochastic differential equation (fSDE) driven by fractional Brownian motion. This equation is then modified to yield an algorithm which is consistent, asymptotically efficient and converges to the MLE. The gradient and Newton type algorithm are firstorder approximations. Finally we study the Berry-Esseen inequality for stochastic gradient descent in continuous time (SGDCT) algorithm for American option. We compare it with Longstaff-Schwartz regression based method.","PeriodicalId":153849,"journal":{"name":"European Journal of Statistics","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/ada/stat.2.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study recursive parameter estimation in fractional diffusion processes. First, stability and asymptotic properties of the global maximum likelihood estimator (MLE) of the drift parameter are obtained under some regularity conditions. Then we obtain an evolution equation for the MLE of the drift parameter in nonhomogeneous fractional stochastic differential equation (fSDE) driven by fractional Brownian motion. This equation is then modified to yield an algorithm which is consistent, asymptotically efficient and converges to the MLE. The gradient and Newton type algorithm are firstorder approximations. Finally we study the Berry-Esseen inequality for stochastic gradient descent in continuous time (SGDCT) algorithm for American option. We compare it with Longstaff-Schwartz regression based method.
美式期权的分数阶扩散的MLE演化方程和随机梯度下降算法的Berry-Esseen不等式
研究分数阶扩散过程的递归参数估计。首先,在一定的正则性条件下,得到了漂移参数的全局极大似然估计的稳定性和渐近性。得到了分数阶布朗运动驱动的非齐次分数阶随机微分方程漂移参数最大似然值的演化方程。然后对该方程进行修改,得到一个一致的、渐近有效的、收敛于最大似然估计的算法。梯度算法和牛顿算法都是一级近似。最后研究了美式期权连续时间随机梯度下降算法的Berry-Esseen不等式。我们将其与基于Longstaff-Schwartz回归的方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信