Activity Recognition using Deep Denoising Autoencoder

M. H. M. Noor, Mohd Anuaruddin Bin Ahmadon, M. K. Osman
{"title":"Activity Recognition using Deep Denoising Autoencoder","authors":"M. H. M. Noor, Mohd Anuaruddin Bin Ahmadon, M. K. Osman","doi":"10.1109/ICCSCE47578.2019.9068571","DOIUrl":null,"url":null,"abstract":"Existing feature extraction method for activity recognition is time consuming and laborious and prone to error. This paper proposes an unsupervised deep learning method for feature learning in activity recognition using tri-axial accelerometer. The proposed method extracts the relevant features automatically, eliminating the needs of feature extraction and selection stages. We evaluate and compared the proposed method with the conventional method in terms of recognition accuracy on a public dataset with wide range of activities. Results have shown that the proposed method achieved a better performance, improving the recognition accuracy by 0.03.","PeriodicalId":221890,"journal":{"name":"2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE47578.2019.9068571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Existing feature extraction method for activity recognition is time consuming and laborious and prone to error. This paper proposes an unsupervised deep learning method for feature learning in activity recognition using tri-axial accelerometer. The proposed method extracts the relevant features automatically, eliminating the needs of feature extraction and selection stages. We evaluate and compared the proposed method with the conventional method in terms of recognition accuracy on a public dataset with wide range of activities. Results have shown that the proposed method achieved a better performance, improving the recognition accuracy by 0.03.
基于深度去噪自编码器的活动识别
现有的活动识别特征提取方法耗时费力且容易出错。提出了一种基于三轴加速度计的无监督深度学习方法,用于活动识别中的特征学习。该方法自动提取相关特征,省去了特征提取和选择阶段。我们在具有广泛活动的公共数据集上评估并比较了所提出的方法与传统方法在识别精度方面的差异。结果表明,该方法取得了较好的识别效果,识别精度提高了0.03。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信