A memory binary particle swarm optimization

Z. Ji, Tao Tian, Shan He, Zexuan Zhu
{"title":"A memory binary particle swarm optimization","authors":"Z. Ji, Tao Tian, Shan He, Zexuan Zhu","doi":"10.1109/CEC.2012.6256150","DOIUrl":null,"url":null,"abstract":"This paper proposes a memory binary particle swarm optimization algorithm (MBPSO) based on a new updating strategy. Unlike the traditional binary PSO, which updates the binary bits of a particle ignoring their previous status, MBPSO memorizes the bit status and updates them according to a new defined velocity. As such, precious historical information could be retained to guide the search. The velocity vector of MBPSO is designed as a probability for deciding whether the particle bits change or not. The proposed algorithm is tested on four discrete benchmark functions. The experimental results reported over 100 runs show that MBPSO is capable of obtaining encouraging performance in discrete optimization problems.","PeriodicalId":376837,"journal":{"name":"2012 IEEE Congress on Evolutionary Computation","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2012.6256150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a memory binary particle swarm optimization algorithm (MBPSO) based on a new updating strategy. Unlike the traditional binary PSO, which updates the binary bits of a particle ignoring their previous status, MBPSO memorizes the bit status and updates them according to a new defined velocity. As such, precious historical information could be retained to guide the search. The velocity vector of MBPSO is designed as a probability for deciding whether the particle bits change or not. The proposed algorithm is tested on four discrete benchmark functions. The experimental results reported over 100 runs show that MBPSO is capable of obtaining encouraging performance in discrete optimization problems.
提出了一种基于新的更新策略的内存二粒子群优化算法(MBPSO)。传统的二进制粒子粒子群算法更新粒子的二进制位,而忽略它们之前的状态,而MBPSO算法会记住位的状态,并根据一个新的定义速度更新它们。因此,可以保留宝贵的历史信息来指导搜索。MBPSO的速度矢量被设计为决定粒子位是否变化的概率。在四个离散基准函数上对该算法进行了测试。超过100次运行的实验结果表明,MBPSO能够在离散优化问题中获得令人鼓舞的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信