{"title":"Zero-Moment Point on a bipedal robot under bio-inspired walking control","authors":"Nicolas Van der Noot, Allan Barrea","doi":"10.1109/MELCON.2014.6820512","DOIUrl":null,"url":null,"abstract":"Humanoid robots are currently still far from reaching the impressive human walking capabilities. Among the different methods used to design walking controllers, those based on the Zero-Moment Point (ZMP) criterion are among the most popular, even if they induce intrinsic limitations in terms of energy consumption and robustness. In parallel, bio-inspired controllers are emerging. They overcome the ZMP-based limitations, but still miss robust stabilization rules to be validated on real robots. This contribution studies how to efficiently compute the ZMP in realtime on a robot walking with bio-inspired control rules, in order to detect when the robot stability is compromised.","PeriodicalId":103316,"journal":{"name":"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2014.6820512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Humanoid robots are currently still far from reaching the impressive human walking capabilities. Among the different methods used to design walking controllers, those based on the Zero-Moment Point (ZMP) criterion are among the most popular, even if they induce intrinsic limitations in terms of energy consumption and robustness. In parallel, bio-inspired controllers are emerging. They overcome the ZMP-based limitations, but still miss robust stabilization rules to be validated on real robots. This contribution studies how to efficiently compute the ZMP in realtime on a robot walking with bio-inspired control rules, in order to detect when the robot stability is compromised.