Deep Learning-Based Segmentation for the Extraction of Micro-Doppler Signatures

Javier Martinez, M. Vossiek
{"title":"Deep Learning-Based Segmentation for the Extraction of Micro-Doppler Signatures","authors":"Javier Martinez, M. Vossiek","doi":"10.23919/EURAD.2018.8546638","DOIUrl":null,"url":null,"abstract":"We present a method for extracting micro-Doppler signatures using a deep convolutional neural network that learns to identify and separate relevant micro-Doppler components from the background. A modified convolutional neural network (fully convolutional network) is trained end-to-end to perform dense predictions from the micro-Doppler signature at the input, generating a map with labels on a pixel level at the output. The network learns intermediate representations with the characteristic patterns of the micro-Doppler paths generated by individual scatterers and is capable of identifying and locating them in the time-frequency representation. The model trained on a simulated environment shows very good performance metrics even in noisy environments, and the experimental results with a continuous wave (CW) radar at 24 GHz indicates that the model can be applied to real scenarios. Moreover, the method scales properly to more complex signatures when several components are superimposed in the time-frequency representation, which indicates that this concept might represent a promising approach for interpreting complex micro-Doppler signatures.","PeriodicalId":171460,"journal":{"name":"2018 15th European Radar Conference (EuRAD)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th European Radar Conference (EuRAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EURAD.2018.8546638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present a method for extracting micro-Doppler signatures using a deep convolutional neural network that learns to identify and separate relevant micro-Doppler components from the background. A modified convolutional neural network (fully convolutional network) is trained end-to-end to perform dense predictions from the micro-Doppler signature at the input, generating a map with labels on a pixel level at the output. The network learns intermediate representations with the characteristic patterns of the micro-Doppler paths generated by individual scatterers and is capable of identifying and locating them in the time-frequency representation. The model trained on a simulated environment shows very good performance metrics even in noisy environments, and the experimental results with a continuous wave (CW) radar at 24 GHz indicates that the model can be applied to real scenarios. Moreover, the method scales properly to more complex signatures when several components are superimposed in the time-frequency representation, which indicates that this concept might represent a promising approach for interpreting complex micro-Doppler signatures.
基于深度学习的微多普勒特征提取分割
我们提出了一种使用深度卷积神经网络提取微多普勒特征的方法,该网络学习识别和分离背景中相关的微多普勒分量。一个改进的卷积神经网络(全卷积网络)被端到端训练,从输入的微多普勒特征中执行密集预测,在输出处生成具有像素级标签的地图。该网络学习由单个散射体产生的微多普勒路径的特征模式的中间表示,并能够在时频表示中识别和定位它们。在模拟环境中训练的模型即使在噪声环境中也显示出良好的性能指标,在24 GHz连续波雷达上的实验结果表明,该模型可以应用于实际场景。此外,当多个分量在时频表示中叠加时,该方法可以适用于更复杂的特征,这表明该概念可能是解释复杂微多普勒特征的一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信