Adding Dual Variables to Algebraic Reasoning for Gate-Level Multiplier Verification

Daniela Kaufmann, P. Beame, Armin Biere, J. Nordström
{"title":"Adding Dual Variables to Algebraic Reasoning for Gate-Level Multiplier Verification","authors":"Daniela Kaufmann, P. Beame, Armin Biere, J. Nordström","doi":"10.23919/DATE54114.2022.9774587","DOIUrl":null,"url":null,"abstract":"Algebraic reasoning has proven to be one of the most effective approaches for verifying gate-level integer mul-tipliers, but it struggles with certain components, necessitating the complementary use of SAT solvers. For this reason validation certificates require proofs in two different formats. Approaches to unify the certificates are not scalable, meaning that the validation results can only be trusted up to the correctness of compositional reasoning. We show in this paper that using dual variables in the algebraic encoding, together with a novel tail substitution and carry rewriting method, removes the need for SAT solvers in the verification flow and yields a single, uniform proof certificate.","PeriodicalId":232583,"journal":{"name":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE54114.2022.9774587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Algebraic reasoning has proven to be one of the most effective approaches for verifying gate-level integer mul-tipliers, but it struggles with certain components, necessitating the complementary use of SAT solvers. For this reason validation certificates require proofs in two different formats. Approaches to unify the certificates are not scalable, meaning that the validation results can only be trusted up to the correctness of compositional reasoning. We show in this paper that using dual variables in the algebraic encoding, together with a novel tail substitution and carry rewriting method, removes the need for SAT solvers in the verification flow and yields a single, uniform proof certificate.
门级乘法器验证的代数推理中加入对偶变量
代数推理已被证明是验证门级整数乘数的最有效方法之一,但它与某些组件相冲突,需要补充使用SAT求解器。由于这个原因,验证证书需要两种不同格式的证明。统一证书的方法是不可伸缩的,这意味着验证结果只能被信任到组合推理的正确性为止。我们在本文中表明,在代数编码中使用对偶变量,加上一种新颖的尾部替换和进位重写方法,在验证流程中消除了对SAT求解器的需要,并产生了一个单一的、统一的证明证书。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信