Small Magnitude PMU Bad Data Detection Based on Data Mining Technology

Hongjun Zhao, L. Fu, Xinchuang Liu, Siyu Xiong, Kailing Cao, Junxiong Wang
{"title":"Small Magnitude PMU Bad Data Detection Based on Data Mining Technology","authors":"Hongjun Zhao, L. Fu, Xinchuang Liu, Siyu Xiong, Kailing Cao, Junxiong Wang","doi":"10.1109/iSPEC50848.2020.9351297","DOIUrl":null,"url":null,"abstract":"This paper presents a method to detect bad data from small amplitude Phasor Measurement Units (PMUs). First of all, the characteristics of poor PMU data with small amplitude are analyzed. Then, the advantages of long short-term memory (LSTM) network in processing time series data are analyzed, and the characteristics of time series data selection memory are used to extract the characteristic quantities of PMU amplitude data. Next, a method of using the phase angle slope to amplify the characteristics of the bad phase angle data is proposed. Finally, using the characteristics of the amplitude and phase angle of the PMU data, and using the density-based spatial clustering (DBSCAN) algorithm of the noise-based application for clustering analysis, the effective detection of small-amplitude PMU bad data is realized. Simulation results show that this method can improve the quality of PMU data.","PeriodicalId":403879,"journal":{"name":"2020 IEEE Sustainable Power and Energy Conference (iSPEC)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sustainable Power and Energy Conference (iSPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSPEC50848.2020.9351297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a method to detect bad data from small amplitude Phasor Measurement Units (PMUs). First of all, the characteristics of poor PMU data with small amplitude are analyzed. Then, the advantages of long short-term memory (LSTM) network in processing time series data are analyzed, and the characteristics of time series data selection memory are used to extract the characteristic quantities of PMU amplitude data. Next, a method of using the phase angle slope to amplify the characteristics of the bad phase angle data is proposed. Finally, using the characteristics of the amplitude and phase angle of the PMU data, and using the density-based spatial clustering (DBSCAN) algorithm of the noise-based application for clustering analysis, the effective detection of small-amplitude PMU bad data is realized. Simulation results show that this method can improve the quality of PMU data.
基于数据挖掘技术的PMU小量级不良数据检测
提出了一种检测小幅度相量测量单元(pmu)不良数据的方法。首先,分析了低幅值PMU数据的特点。然后,分析了长短期记忆(LSTM)网络在处理时间序列数据方面的优势,利用时间序列数据选择记忆的特点提取PMU振幅数据的特征量。其次,提出了一种利用相角斜率放大不良相角数据特征的方法。最后,利用PMU数据的幅值和相位角特征,利用基于噪声应用的基于密度的空间聚类(DBSCAN)算法进行聚类分析,实现了对小幅值PMU坏数据的有效检测。仿真结果表明,该方法可以提高PMU数据的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信