Extending physics capabilities of the PHENIX detector with calorimetry at forward rapidities

V. Dzhordzhadze
{"title":"Extending physics capabilities of the PHENIX detector with calorimetry at forward rapidities","authors":"V. Dzhordzhadze","doi":"10.1556/APH.25.2006.2-4.36","DOIUrl":null,"url":null,"abstract":"The PHENIX detector at RHIC has been designed to study different signatures of the states of matter created in heavy-ion collisions, and to investigate the spin structure of the nucleon. The PHENIX detector measures muons in two muon spectrometers, located at forward rapidities (1.2 < |η| < 2.4) and hadrons, electrons and photons in the two central spectrometers at midrapidity (|η| <0.35). To make a next step in the PHENIX research program, it is necessary to extend the rapidity coverage beyond the limits set by the existing central spectrometer. The functionality of the PHENIX muon detectors can be extended with added capabilities to measure photonic and hadronic jets. Tungsten calorimeters with silicon pixel readout and fine transverse and longitudinal segmentation are proposed to attain this goal. The proposed calorimeters will be located in the forward directions on either side of the PHENIX interaction point. In this talk we report on the studies of the functionality of the proposed calorimeters: the detector energy resolution, the jet reconstruction capabilities and the characteristics of pion rejection.","PeriodicalId":201208,"journal":{"name":"Acta Physica Hungarica A) Heavy Ion Physics","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Hungarica A) Heavy Ion Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/APH.25.2006.2-4.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The PHENIX detector at RHIC has been designed to study different signatures of the states of matter created in heavy-ion collisions, and to investigate the spin structure of the nucleon. The PHENIX detector measures muons in two muon spectrometers, located at forward rapidities (1.2 < |η| < 2.4) and hadrons, electrons and photons in the two central spectrometers at midrapidity (|η| <0.35). To make a next step in the PHENIX research program, it is necessary to extend the rapidity coverage beyond the limits set by the existing central spectrometer. The functionality of the PHENIX muon detectors can be extended with added capabilities to measure photonic and hadronic jets. Tungsten calorimeters with silicon pixel readout and fine transverse and longitudinal segmentation are proposed to attain this goal. The proposed calorimeters will be located in the forward directions on either side of the PHENIX interaction point. In this talk we report on the studies of the functionality of the proposed calorimeters: the detector energy resolution, the jet reconstruction capabilities and the characteristics of pion rejection.
扩展PHENIX探测器的物理能力,在向前的速度量热法
RHIC的PHENIX探测器被设计用于研究重离子碰撞中产生的物质状态的不同特征,并研究核子的自旋结构。PHENIX探测器在两个介子光谱仪中测量介子,位于正向速度(1.2 < |η| < 2.4),在两个中心光谱仪中测量强子、电子和光子(|η| <0.35)。为了在PHENIX研究计划中取得下一步进展,有必要将快速覆盖范围扩展到现有中心光谱仪设定的极限之外。PHENIX μ子探测器的功能可以扩展,增加测量光子和强子射流的能力。为了实现这一目标,提出了具有硅像素读出和精细横向和纵向分割的钨量热计。提议的量热计将位于PHENIX相互作用点的两侧。在这次演讲中,我们报告了所提出的量热计的功能研究:探测器能量分辨率,射流重建能力和介子拒绝特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信