{"title":"Extending physics capabilities of the PHENIX detector with calorimetry at forward rapidities","authors":"V. Dzhordzhadze","doi":"10.1556/APH.25.2006.2-4.36","DOIUrl":null,"url":null,"abstract":"The PHENIX detector at RHIC has been designed to study different signatures of the states of matter created in heavy-ion collisions, and to investigate the spin structure of the nucleon. The PHENIX detector measures muons in two muon spectrometers, located at forward rapidities (1.2 < |η| < 2.4) and hadrons, electrons and photons in the two central spectrometers at midrapidity (|η| <0.35). To make a next step in the PHENIX research program, it is necessary to extend the rapidity coverage beyond the limits set by the existing central spectrometer. The functionality of the PHENIX muon detectors can be extended with added capabilities to measure photonic and hadronic jets. Tungsten calorimeters with silicon pixel readout and fine transverse and longitudinal segmentation are proposed to attain this goal. The proposed calorimeters will be located in the forward directions on either side of the PHENIX interaction point. In this talk we report on the studies of the functionality of the proposed calorimeters: the detector energy resolution, the jet reconstruction capabilities and the characteristics of pion rejection.","PeriodicalId":201208,"journal":{"name":"Acta Physica Hungarica A) Heavy Ion Physics","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Hungarica A) Heavy Ion Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/APH.25.2006.2-4.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The PHENIX detector at RHIC has been designed to study different signatures of the states of matter created in heavy-ion collisions, and to investigate the spin structure of the nucleon. The PHENIX detector measures muons in two muon spectrometers, located at forward rapidities (1.2 < |η| < 2.4) and hadrons, electrons and photons in the two central spectrometers at midrapidity (|η| <0.35). To make a next step in the PHENIX research program, it is necessary to extend the rapidity coverage beyond the limits set by the existing central spectrometer. The functionality of the PHENIX muon detectors can be extended with added capabilities to measure photonic and hadronic jets. Tungsten calorimeters with silicon pixel readout and fine transverse and longitudinal segmentation are proposed to attain this goal. The proposed calorimeters will be located in the forward directions on either side of the PHENIX interaction point. In this talk we report on the studies of the functionality of the proposed calorimeters: the detector energy resolution, the jet reconstruction capabilities and the characteristics of pion rejection.