Reducing leakage power by accounting for temperature inversion dependence in dual-Vt synthesized circuits

A. Calimera, R. I. Bahar, E. Macii, M. Poncino
{"title":"Reducing leakage power by accounting for temperature inversion dependence in dual-Vt synthesized circuits","authors":"A. Calimera, R. I. Bahar, E. Macii, M. Poncino","doi":"10.1145/1393921.1393978","DOIUrl":null,"url":null,"abstract":"The effects of temperature on delay depend on several parameters, such as cell size, load, supply voltage, and threshold voltage. In particular, variations in Vth can yield a temperature inversion effect causing a decreases of cell delay as temperature increases. This phenomenon, besides affecting timing analysis of a design, has important and unforeseeable consequences on power optimization techniques. In this paper, we focus on the impact of such effects on multi-Vt design; in particular, we show how traditional dual-Vt optimization may yield timing errors in circuits by ignoring temperature effects. Moreover, we present a temperature-aware dual-Vt optimization technique that reduces leakage power and can guarantee that the circuit is timing feasible at the boundary temperatures provided by the technology library. Our experiments show an average 27% leakage reduction with respect to a non temperature-aware design flow.","PeriodicalId":166672,"journal":{"name":"Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1393921.1393978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The effects of temperature on delay depend on several parameters, such as cell size, load, supply voltage, and threshold voltage. In particular, variations in Vth can yield a temperature inversion effect causing a decreases of cell delay as temperature increases. This phenomenon, besides affecting timing analysis of a design, has important and unforeseeable consequences on power optimization techniques. In this paper, we focus on the impact of such effects on multi-Vt design; in particular, we show how traditional dual-Vt optimization may yield timing errors in circuits by ignoring temperature effects. Moreover, we present a temperature-aware dual-Vt optimization technique that reduces leakage power and can guarantee that the circuit is timing feasible at the boundary temperatures provided by the technology library. Our experiments show an average 27% leakage reduction with respect to a non temperature-aware design flow.
通过考虑双vt合成电路的温度反转依赖性来降低泄漏功率
温度对延迟的影响取决于几个参数,如电池大小、负载、电源电压和阈值电压。特别是,Vth的变化可以产生温度反转效应,导致细胞延迟随着温度的升高而减少。这种现象除了会影响设计的时序分析外,还会对功率优化技术产生不可预见的重要影响。在本文中,我们重点研究了这些效应对多腔设计的影响;特别是,我们展示了传统的双vt优化如何通过忽略温度影响而在电路中产生时序误差。此外,我们提出了一种温度敏感的双vt优化技术,可以降低泄漏功率,并保证电路在技术库提供的边界温度下是时序可行的。我们的实验表明,相对于非温度感知设计流,平均减少27%的泄漏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信