{"title":"Multiple chip planning for chip-interposer codesign","authors":"Yuan-Kai Ho, Yao-Wen Chang","doi":"10.1145/2463209.2488767","DOIUrl":null,"url":null,"abstract":"An interposer-based three-dimensional integrated circuit, which introduces a silicon interposer as an interface between chips and a package, is one of the most promising integration technologies for modern and next-generation circuit designs. Inter-chip connections can be routed on the interposer by chip-scale wires to enhance design quality. However, its design complexity increases dramatically due to the extra interposer interface. Consequently, it is desirable to simultaneously consider the co-design of the interposer and multiple chips mounted on it. This paper addresses the first work of chip-interposer codesign to place multiple chips on an interposer to reduce inter-chip wirelength. For this problem, we propose a new hierarchical B*-tree to simultaneously place multiple chips, macros, and I/O Buffers. An approach based on bipartite matching is then proposed to concurrently assign signals from I/O buffers to micro bumps. Experimental results show that our approach is effective and efficient for the codesign problem.","PeriodicalId":320207,"journal":{"name":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2463209.2488767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
An interposer-based three-dimensional integrated circuit, which introduces a silicon interposer as an interface between chips and a package, is one of the most promising integration technologies for modern and next-generation circuit designs. Inter-chip connections can be routed on the interposer by chip-scale wires to enhance design quality. However, its design complexity increases dramatically due to the extra interposer interface. Consequently, it is desirable to simultaneously consider the co-design of the interposer and multiple chips mounted on it. This paper addresses the first work of chip-interposer codesign to place multiple chips on an interposer to reduce inter-chip wirelength. For this problem, we propose a new hierarchical B*-tree to simultaneously place multiple chips, macros, and I/O Buffers. An approach based on bipartite matching is then proposed to concurrently assign signals from I/O buffers to micro bumps. Experimental results show that our approach is effective and efficient for the codesign problem.