Gaussian mixture tracking: MHT and ITS comparison

T. Song, D. Musicki, Hyoung-Won Kim, F. Govaers
{"title":"Gaussian mixture tracking: MHT and ITS comparison","authors":"T. Song, D. Musicki, Hyoung-Won Kim, F. Govaers","doi":"10.1109/SDF.2013.6698257","DOIUrl":null,"url":null,"abstract":"A Gaussian Mixture (GM) target tracking solution is a natural consequence of the multi-target tracking in clutter, given a linear target trajectory propagation and a linear target measurement equation. We examine and compare two prominent GM target trackers: the Multi Hypothesis Tracking (MHT) and the Integrated Track Splitting. Both incorporate the false track discrimination capabilities, enabling automatic target tracking in the presence of clutter measurements and missed detections.","PeriodicalId":228075,"journal":{"name":"2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDF.2013.6698257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A Gaussian Mixture (GM) target tracking solution is a natural consequence of the multi-target tracking in clutter, given a linear target trajectory propagation and a linear target measurement equation. We examine and compare two prominent GM target trackers: the Multi Hypothesis Tracking (MHT) and the Integrated Track Splitting. Both incorporate the false track discrimination capabilities, enabling automatic target tracking in the presence of clutter measurements and missed detections.
高斯混合跟踪:MHT与ITS的比较
给定线性目标轨迹传播和线性目标测量方程,高斯混合目标跟踪解是杂波条件下多目标跟踪的自然结果。我们研究并比较了两种突出的GM目标跟踪方法:多假设跟踪和综合航迹分割。两者都结合了错误跟踪识别功能,在杂波测量和漏检存在的情况下实现自动目标跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信