C. Labounty, A. Karim, X. Fan, G. Zeng, P. Abraham, Y. Okuno, J. Bowers
{"title":"Wafer-fused thin film cooler semiconductor laser structures","authors":"C. Labounty, A. Karim, X. Fan, G. Zeng, P. Abraham, Y. Okuno, J. Bowers","doi":"10.1109/ICT.2001.979915","DOIUrl":null,"url":null,"abstract":"We examine the cooling requirements and temperature stabilization needs of semiconductor lasers with emphasis on vertical cavity surface emitting laser (VCSEL) arrays. Semiconductor lasers in both in-plane and vertical cavity geometries are capable of generating large heat power densities of the order of kW/cm/sup 2/ over areas as small as 100 /spl mu/m/sup 2/. When cooling of the laser is needed, the cooler should be able to provide similar amounts of heat pumping. For these large amounts of heat pumping, a thin-film cooler structure is needed, especially if individual devices of an array must have precise temperature stabilization. Integration of the laser and thin film cooler by Au-Au wafer fusion is proposed. The fusion of the two interfaces is accomplished by mass transport in the deposited Au-films, which can be achieved under pressure at elevated temperatures. The quality of the fused interface is studied and preliminary experimental results are presented.","PeriodicalId":203601,"journal":{"name":"Proceedings ICT2001. 20 International Conference on Thermoelectrics (Cat. No.01TH8589)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ICT2001. 20 International Conference on Thermoelectrics (Cat. No.01TH8589)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2001.979915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We examine the cooling requirements and temperature stabilization needs of semiconductor lasers with emphasis on vertical cavity surface emitting laser (VCSEL) arrays. Semiconductor lasers in both in-plane and vertical cavity geometries are capable of generating large heat power densities of the order of kW/cm/sup 2/ over areas as small as 100 /spl mu/m/sup 2/. When cooling of the laser is needed, the cooler should be able to provide similar amounts of heat pumping. For these large amounts of heat pumping, a thin-film cooler structure is needed, especially if individual devices of an array must have precise temperature stabilization. Integration of the laser and thin film cooler by Au-Au wafer fusion is proposed. The fusion of the two interfaces is accomplished by mass transport in the deposited Au-films, which can be achieved under pressure at elevated temperatures. The quality of the fused interface is studied and preliminary experimental results are presented.