Bayesian Analysis of Moving Average Stochastic Volatility Models: Modelling in Mean Effects and Leverage for Financial Time Series

S. Dimitrakopoulos, M. Kolossiatis
{"title":"Bayesian Analysis of Moving Average Stochastic Volatility Models: Modelling in Mean Effects and Leverage for Financial Time Series","authors":"S. Dimitrakopoulos, M. Kolossiatis","doi":"10.2139/ssrn.2966886","DOIUrl":null,"url":null,"abstract":"We propose a moving average stochastic volatility in mean model and a moving average stochastic volatility model with leverage. For parameter estimation, we develop efficient Markov chain Monte Carlo algorithms and illustrate our methods, using simulated data and a real data set. We compare the proposed specifications against several competing stochastic volatility models, using marginal likelihoods and the observed-data Deviance information criterion. We find that the moving average stochastic volatility model with leverage has better fit to our daily return series than various standard benchmarks.","PeriodicalId":202880,"journal":{"name":"Research Methods & Methodology in Accounting eJournal","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Methods & Methodology in Accounting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2966886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a moving average stochastic volatility in mean model and a moving average stochastic volatility model with leverage. For parameter estimation, we develop efficient Markov chain Monte Carlo algorithms and illustrate our methods, using simulated data and a real data set. We compare the proposed specifications against several competing stochastic volatility models, using marginal likelihoods and the observed-data Deviance information criterion. We find that the moving average stochastic volatility model with leverage has better fit to our daily return series than various standard benchmarks.
移动平均随机波动率模型的贝叶斯分析:金融时间序列的平均效应和杠杆建模
我们提出了均值模型中的移动平均随机波动率和带杠杆的移动平均随机波动率模型。对于参数估计,我们开发了有效的马尔可夫链蒙特卡罗算法,并使用模拟数据和真实数据集说明了我们的方法。我们使用边际似然和观测数据偏差信息准则,将提出的规范与几个相互竞争的随机波动模型进行比较。我们发现,与各种标准基准相比,带杠杆的移动平均随机波动率模型更适合我们的日收益序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信