Thermal Performance Analysis of Multi-Layer Thermal Energy Storage Tank Using Different Phase Change Materials

Md. Ali Azam, Mohammad Arif Hasan Mamun
{"title":"Thermal Performance Analysis of Multi-Layer Thermal Energy Storage Tank Using Different Phase Change Materials","authors":"Md. Ali Azam, Mohammad Arif Hasan Mamun","doi":"10.1115/imece2021-72672","DOIUrl":null,"url":null,"abstract":"\n A thermocline thermal energy storage (TES) tank is the key element of storing thermal energy for concentrated solar power (CSP) plants. This paper focuses on the numerical analysis of the single-phase thermal energy storage (TES) and the two-phase latent heat thermal energy storage (LHTES) for single-layered and multi-layered phase change materials (MLPCMs) using molten salt, FLiNaK, a eutectic mixture of 46.5%LiF, 11.5%NaF, and 42% KF as the heat transfer fluid. The heat transfer module for the computational domain is analyzed using the Dispersion-Concentric model which is based on energy equations and is solved by the finite element method. The results of the TES were compared with that of an existing numerical study in the literature, and they were found to be reasonably in agreement. The high thermal conductivity and specific heat capacity offered to the LHTES by the PCMs result in the best charging and discharging thermal cycle. The study helps us to understand the thermal behavior of temperature inside the tank for different PCMs and from the comparative thermal analysis of the study, it is possible to choose the best PCM among the alternatives.","PeriodicalId":238134,"journal":{"name":"Volume 8B: Energy","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8B: Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-72672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A thermocline thermal energy storage (TES) tank is the key element of storing thermal energy for concentrated solar power (CSP) plants. This paper focuses on the numerical analysis of the single-phase thermal energy storage (TES) and the two-phase latent heat thermal energy storage (LHTES) for single-layered and multi-layered phase change materials (MLPCMs) using molten salt, FLiNaK, a eutectic mixture of 46.5%LiF, 11.5%NaF, and 42% KF as the heat transfer fluid. The heat transfer module for the computational domain is analyzed using the Dispersion-Concentric model which is based on energy equations and is solved by the finite element method. The results of the TES were compared with that of an existing numerical study in the literature, and they were found to be reasonably in agreement. The high thermal conductivity and specific heat capacity offered to the LHTES by the PCMs result in the best charging and discharging thermal cycle. The study helps us to understand the thermal behavior of temperature inside the tank for different PCMs and from the comparative thermal analysis of the study, it is possible to choose the best PCM among the alternatives.
不同相变材料多层储热罐热性能分析
温跃层储热槽(TES)是聚光太阳能(CSP)电站储存热能的关键部件。本文以熔融盐、FLiNaK (46.5%LiF、11.5%NaF和42% KF的共晶混合物)为传热流体,对单层和多层相变材料(MLPCMs)的单相蓄热(TES)和两相潜热蓄热(LHTES)进行了数值分析。采用基于能量方程的弥散-同心模型对计算域内的传热模块进行了分析,并采用有限元法进行了求解。TES的结果与文献中现有的数值研究的结果进行了比较,发现它们是相当一致的。PCMs提供给LHTES的高导热系数和比热容导致了最佳的充放电热循环。该研究有助于我们了解不同PCM的罐内温度的热行为,并从研究的比较热分析中,可以在备选方案中选择最佳的PCM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信