At Least Squares

S. Osterlind
{"title":"At Least Squares","authors":"S. Osterlind","doi":"10.1093/OSO/9780198831600.003.0007","DOIUrl":null,"url":null,"abstract":"This chapter focuses on the next important mathematical invention: the method of least squares. First, it sets the historical context for its invention by describing the events in France and Germany leading up to the French Revolution. Next, the chapter describes how the method of least squares was invented twice, first by Adrien-Marie Legendre (as an appendix to his celestial investigations in Nouvelles méthodes pour la détermination des orbites des comètes), and then in a more sophisticated version by Carl Gauss, in Disquisitiones Arithmeticae. After that, an easy-to-understand description of method itself is given. Thus, the chapter goes from observation to probability and on to prediction, through regression, discussing ordinary least squares (OLS), intercepts, and slopes.","PeriodicalId":312432,"journal":{"name":"The Error of Truth","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Error of Truth","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198831600.003.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter focuses on the next important mathematical invention: the method of least squares. First, it sets the historical context for its invention by describing the events in France and Germany leading up to the French Revolution. Next, the chapter describes how the method of least squares was invented twice, first by Adrien-Marie Legendre (as an appendix to his celestial investigations in Nouvelles méthodes pour la détermination des orbites des comètes), and then in a more sophisticated version by Carl Gauss, in Disquisitiones Arithmeticae. After that, an easy-to-understand description of method itself is given. Thus, the chapter goes from observation to probability and on to prediction, through regression, discussing ordinary least squares (OLS), intercepts, and slopes.
最小二乘
本章重点介绍下一个重要的数学发明:最小二乘法。首先,它通过描述法国和德国导致法国大革命的事件,为其发明设定了历史背景。接下来,本章描述了最小二乘方法是如何被两次发明的,第一次是由阿德里安-玛丽·勒让德发明的(作为他在《Nouvelles msamthodes pour la dsamodedes orbites des com》中的天体研究的附录),然后是卡尔·高斯在《disquisitions arithmetica》中更复杂的版本。然后,对方法本身进行了简单易懂的描述。因此,本章从观察到概率,再到预测,通过回归,讨论普通最小二乘(OLS)、截距和斜率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信