Peramalan Deret Waktu untuk Bisnis : Pendekatan algoritma LGBM Regressor

Fachrul Rozi Lubis, Eddy Rahman Syahputra
{"title":"Peramalan Deret Waktu untuk Bisnis : Pendekatan algoritma LGBM Regressor","authors":"Fachrul Rozi Lubis, Eddy Rahman Syahputra","doi":"10.47709/dsi.v1i2.1347","DOIUrl":null,"url":null,"abstract":"Peramalan deret waktu adalah topik yang cukup umum di bidang data science (ilmu data). Perusahaan menggunakan model peramalan untuk mendapatkan pandangan yang lebih jelas tentang bisnis masa depan. Data masa lalu dikumpulkan dan dianalisis melalui model kuantitatif atau kualitatif sehingga pola dapat diidentifikasi dan dapat mengarahkan perencanaan bisnis di masa depan akan tetapi memilih algoritme yang tepat merupakan salah satu keputusan sulit ketika akan mengembangkan model peramalan deret waktu. Penelitian ini menyajikan hasil analisi data dengan mengadopsi kerangka kerja data science CRISP-DM dan membandingkan lima algoritma berbeda untuk memperkirakan penjualan harian selama 28 hari ke depan. Berdasarkan hasil evaluasi kinerja RMSE, algoritma LGBM Regressor menghasilkan tingkat kesalahan 7.53 %, paling rendah dibandingkan algoritma lain, akan tetapi waktu pelatihan dan pengujian paling tinggi.","PeriodicalId":155875,"journal":{"name":"Data Sciences Indonesia (DSI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Sciences Indonesia (DSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47709/dsi.v1i2.1347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Peramalan deret waktu adalah topik yang cukup umum di bidang data science (ilmu data). Perusahaan menggunakan model peramalan untuk mendapatkan pandangan yang lebih jelas tentang bisnis masa depan. Data masa lalu dikumpulkan dan dianalisis melalui model kuantitatif atau kualitatif sehingga pola dapat diidentifikasi dan dapat mengarahkan perencanaan bisnis di masa depan akan tetapi memilih algoritme yang tepat merupakan salah satu keputusan sulit ketika akan mengembangkan model peramalan deret waktu. Penelitian ini menyajikan hasil analisi data dengan mengadopsi kerangka kerja data science CRISP-DM dan membandingkan lima algoritma berbeda untuk memperkirakan penjualan harian selama 28 hari ke depan. Berdasarkan hasil evaluasi kinerja RMSE, algoritma LGBM Regressor menghasilkan tingkat kesalahan 7.53 %, paling rendah dibandingkan algoritma lain, akan tetapi waktu pelatihan dan pengujian paling tinggi.
时间线预测是数据科学的一个相当普遍的话题。公司使用模型模型来更清楚地了解未来的业务。过去的数据是通过定量或定性模式收集和分析的,这样就可以识别模式并指导未来的业务规划,但选择正确的算法是发展时间连续体模型的一个困难决定。该研究采用科学CRISP-DM数据框架并比较了5个不同的算法,估计未来28天的每日销售情况。基于RMSE绩效评估结果,LGBM退化算法产生的误差率为7.53 %,比其他算法最低,但训练和测试时间是最高的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信