Liable Characteristics Measure and Anticipate the Diabetes Disease Using Machine Learning Tools

M. M. Hossain, Md. Rana Ahmed, M. Hasan, M. Sultana, K. Fatema
{"title":"Liable Characteristics Measure and Anticipate the Diabetes Disease Using Machine Learning Tools","authors":"M. M. Hossain, Md. Rana Ahmed, M. Hasan, M. Sultana, K. Fatema","doi":"10.28924/ada/stat.3.2","DOIUrl":null,"url":null,"abstract":"Diabetes is a cardiovascular disease. It is not only an epidemic in Bangladesh but also in the whole world that is increasing rapidly. At an early period of human life, machine learning techniques are used to predict diabetes datasets. In our research paper, we use the Pima diabetes dataset from the Kaggle UCI machine learning data repository. For diabetic patients and doctors, machine learning techniques are both cost-effective and time-saving. We apply KNN, Nave Bayes, Random forest, Support vector machine, Simple logistic, and J48 to Pima datasets. Besides these algorithms, we may develop an ensemble (Vote) hybrid model with WEKA software by combining individual methods that provide the best performance and accuracy. Also, try to make a comparison among all machine learning tool’s accuracy and performance with the proposed ensemble model.","PeriodicalId":153849,"journal":{"name":"European Journal of Statistics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/ada/stat.3.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes is a cardiovascular disease. It is not only an epidemic in Bangladesh but also in the whole world that is increasing rapidly. At an early period of human life, machine learning techniques are used to predict diabetes datasets. In our research paper, we use the Pima diabetes dataset from the Kaggle UCI machine learning data repository. For diabetic patients and doctors, machine learning techniques are both cost-effective and time-saving. We apply KNN, Nave Bayes, Random forest, Support vector machine, Simple logistic, and J48 to Pima datasets. Besides these algorithms, we may develop an ensemble (Vote) hybrid model with WEKA software by combining individual methods that provide the best performance and accuracy. Also, try to make a comparison among all machine learning tool’s accuracy and performance with the proposed ensemble model.
使用机器学习工具测量和预测糖尿病疾病的责任特征
糖尿病是一种心血管疾病。这种流行病不仅在孟加拉国而且在全世界都在迅速增加。在人类生命的早期,机器学习技术被用来预测糖尿病数据集。在我们的研究论文中,我们使用了来自Kaggle UCI机器学习数据库的Pima糖尿病数据集。对于糖尿病患者和医生来说,机器学习技术既具有成本效益,又节省时间。我们将KNN、朴素贝叶斯、随机森林、支持向量机、简单逻辑和J48应用于Pima数据集。除了这些算法之外,我们还可以通过结合提供最佳性能和准确性的各个方法,与WEKA软件开发一个集成(Vote)混合模型。此外,尝试将所有机器学习工具的准确性和性能与所提出的集成模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信