Yan Ya-li, F. Guang, Gong Shu-xi, Chen Xi, Li Dong-chao
{"title":"Design of a wide-band Yagi-Uda antenna using differential evolution algorithm","authors":"Yan Ya-li, F. Guang, Gong Shu-xi, Chen Xi, Li Dong-chao","doi":"10.1109/ISSSE.2010.5607011","DOIUrl":null,"url":null,"abstract":"This paper presents a wide-band Yagi-Uda antenna with X-shape driven dipoles and parasitic elements using differential evolution algorithm (DE). In the optimization process, a method of moments code, NEC code simulates the antenna designs generated by DE. In order to illustrate the capabilities of the method, a nine-element Yagi-Uda antenna is given. The measured and simulated impedance bandwidth of VSWR<1.8 reaches 19.0%, which is three times the bandwidth of the Yagi-Uda antenna using a dipole driven element. The maximum gain over the operating frequency band is 12.7dB. The results are compared with Nelar Mead method in an equally spaced array design.","PeriodicalId":211786,"journal":{"name":"2010 International Symposium on Signals, Systems and Electronics","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Symposium on Signals, Systems and Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSSE.2010.5607011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents a wide-band Yagi-Uda antenna with X-shape driven dipoles and parasitic elements using differential evolution algorithm (DE). In the optimization process, a method of moments code, NEC code simulates the antenna designs generated by DE. In order to illustrate the capabilities of the method, a nine-element Yagi-Uda antenna is given. The measured and simulated impedance bandwidth of VSWR<1.8 reaches 19.0%, which is three times the bandwidth of the Yagi-Uda antenna using a dipole driven element. The maximum gain over the operating frequency band is 12.7dB. The results are compared with Nelar Mead method in an equally spaced array design.