A Distributed Virtual Time System on Embedded Linux for Evaluating Cyber-Physical Systems

Christopher Hannon, Jiaqi Yan, Yuan-An Liu, Dong Jin
{"title":"A Distributed Virtual Time System on Embedded Linux for Evaluating Cyber-Physical Systems","authors":"Christopher Hannon, Jiaqi Yan, Yuan-An Liu, Dong Jin","doi":"10.1145/3316480.3322895","DOIUrl":null,"url":null,"abstract":"Cyber-physical systems have a cyber presence, collecting and transmitting data, while also collecting information and modifying the physical surrounding world. In order to evaluate the cyber-security of cyber-physical systems, simulation and modeling is a tool often used. In this work, we develop a distributed virtual time system that enables the synchronization of virtual clocks between physical machines enabling a high fidelity simulation based testing platform. The platform combines physical computing and networking hardware for the cyber presence, while allowing for offline simulation and computation of the physical world. By incorporating virtual clocks into distributed embedded Linux devices, the testbed creates the opportunity to interrupt real and emulated cyber-physical applications to inject offline simulated data values. The ability to run real applications and being able to inject simulated data temporally transparent to the running process allows for high fidelity experimentation. Distributed virtual time enables processes and their clocks to be paused, resumed, and dilated across embedded Linux devices through the use of hardware interrupts and a common kernel module. By interconnecting the embedded devices' general purpose IO pins, they can coordinate and synchronize through a distributed virtual time kernel module with low overhead, under 50 microseconds for 8 processes across 4 embedded Linux devices.","PeriodicalId":398793,"journal":{"name":"Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3316480.3322895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Cyber-physical systems have a cyber presence, collecting and transmitting data, while also collecting information and modifying the physical surrounding world. In order to evaluate the cyber-security of cyber-physical systems, simulation and modeling is a tool often used. In this work, we develop a distributed virtual time system that enables the synchronization of virtual clocks between physical machines enabling a high fidelity simulation based testing platform. The platform combines physical computing and networking hardware for the cyber presence, while allowing for offline simulation and computation of the physical world. By incorporating virtual clocks into distributed embedded Linux devices, the testbed creates the opportunity to interrupt real and emulated cyber-physical applications to inject offline simulated data values. The ability to run real applications and being able to inject simulated data temporally transparent to the running process allows for high fidelity experimentation. Distributed virtual time enables processes and their clocks to be paused, resumed, and dilated across embedded Linux devices through the use of hardware interrupts and a common kernel module. By interconnecting the embedded devices' general purpose IO pins, they can coordinate and synchronize through a distributed virtual time kernel module with low overhead, under 50 microseconds for 8 processes across 4 embedded Linux devices.
基于嵌入式Linux的分布式虚拟时间系统评估信息物理系统
网络物理系统具有网络存在,收集和传输数据,同时也收集信息并修改周围的物理世界。为了评估网络物理系统的网络安全,仿真和建模是一种常用的工具。在这项工作中,我们开发了一个分布式虚拟时间系统,可以在物理机器之间实现虚拟时钟的同步,从而实现基于高保真仿真的测试平台。该平台结合了用于网络存在的物理计算和网络硬件,同时允许物理世界的离线模拟和计算。通过将虚拟时钟集成到分布式嵌入式Linux设备中,测试平台创造了中断真实和模拟网络物理应用程序以注入离线模拟数据值的机会。运行真实应用程序的能力,以及对运行进程暂时透明地注入模拟数据的能力,使得高保真实验成为可能。分布式虚拟时间允许通过使用硬件中断和公共内核模块在嵌入式Linux设备上暂停、恢复和扩展进程及其时钟。通过连接嵌入式设备的通用IO引脚,它们可以通过分布式虚拟时间内核模块进行协调和同步,开销很低,在50微秒内完成4个嵌入式Linux设备上的8个进程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信