Exploring the most appropriate feature detector and descriptor algorithm for on-board UAV image processing

Boxin Zhao, Tianjiang Hu, Yifeng Niu, Dengqing Tang, Zhaowei Ma, Weiwei Kong, Lincheng Shen
{"title":"Exploring the most appropriate feature detector and descriptor algorithm for on-board UAV image processing","authors":"Boxin Zhao, Tianjiang Hu, Yifeng Niu, Dengqing Tang, Zhaowei Ma, Weiwei Kong, Lincheng Shen","doi":"10.1109/ICINFA.2015.7279258","DOIUrl":null,"url":null,"abstract":"With the development of computer vision technology, many researches about feature detectors and descriptors have been published in the last decades. In order to explore what kind of approaches are appropriate for unmanned aerial vehicle (UAV) onboard video processing, the popular feature detectors and descriptors are analyzed and combined with each other. Three practical videos captured in indoor environments and outdoor environments are used to test the accuracy, runtime and robustness of these combined algorithms. Results validate that the combinations of different feature detectors and descriptors balance well the accuracy and runtime. This will provide references for choosing appropriate onboard video processing algorithms.","PeriodicalId":186975,"journal":{"name":"2015 IEEE International Conference on Information and Automation","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2015.7279258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the development of computer vision technology, many researches about feature detectors and descriptors have been published in the last decades. In order to explore what kind of approaches are appropriate for unmanned aerial vehicle (UAV) onboard video processing, the popular feature detectors and descriptors are analyzed and combined with each other. Three practical videos captured in indoor environments and outdoor environments are used to test the accuracy, runtime and robustness of these combined algorithms. Results validate that the combinations of different feature detectors and descriptors balance well the accuracy and runtime. This will provide references for choosing appropriate onboard video processing algorithms.
探索最适合机载无人机图像处理的特征检测器和描述子算法
随着计算机视觉技术的发展,近几十年来发表了许多关于特征检测器和描述符的研究。为了探索适合无人机机载视频处理的方法,对目前流行的特征检测器和描述子进行了分析和结合。在室内环境和室外环境中拍摄了三个实际视频,对这些组合算法的准确性、运行时间和鲁棒性进行了测试。结果表明,不同特征检测器和描述符的组合在准确率和运行时间上取得了很好的平衡。这将为选择合适的车载视频处理算法提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信