{"title":"EDA for secure and dependable cybercars: Challenges and opportunities","authors":"F. Koushanfar, A. Sadeghi, Hervé Seudie","doi":"10.1145/2228360.2228402","DOIUrl":null,"url":null,"abstract":"Modern vehicles integrate a multitude of embedded hard realtime control functionalities, and a host of advanced information and entertainment (infotainment) features. The true paradigm shift for future vehicles (cybercars) is not only a result of this increasing plurality of subsystems and functions, but is also driven by the unprecedented levels of intra- and inter-car connections and communications as well as networking with external entities. Several new cybercar security and safety challenges simultaneously arise. On one hand, many challenges arise due to increasing system complexity as well as new functionalities that should jointly work on the existing legacy protocols and technologies; such systems are likely unable to warrant a fully secure and dependable system without afterthoughts. On the other hand, challenges arise due to the escalating number of interconnections among the realtime control functions, infotainment components, and the accessible surrounding external devices, vehicles, networks, and cloud services. The arrival of cybercars calls for novel abstractions, models, protocols, design methodologies, testing and evaluation tools to automate the integration and analysis of the safety and security requirements.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
Modern vehicles integrate a multitude of embedded hard realtime control functionalities, and a host of advanced information and entertainment (infotainment) features. The true paradigm shift for future vehicles (cybercars) is not only a result of this increasing plurality of subsystems and functions, but is also driven by the unprecedented levels of intra- and inter-car connections and communications as well as networking with external entities. Several new cybercar security and safety challenges simultaneously arise. On one hand, many challenges arise due to increasing system complexity as well as new functionalities that should jointly work on the existing legacy protocols and technologies; such systems are likely unable to warrant a fully secure and dependable system without afterthoughts. On the other hand, challenges arise due to the escalating number of interconnections among the realtime control functions, infotainment components, and the accessible surrounding external devices, vehicles, networks, and cloud services. The arrival of cybercars calls for novel abstractions, models, protocols, design methodologies, testing and evaluation tools to automate the integration and analysis of the safety and security requirements.