A Design Method of RBF Neural Network Based on KNN-DPC

L. Boyang, Gui Zhiming
{"title":"A Design Method of RBF Neural Network Based on KNN-DPC","authors":"L. Boyang, Gui Zhiming","doi":"10.1109/ICISCAE.2018.8666828","DOIUrl":null,"url":null,"abstract":"In RBF neural networks, the basis functions of hidden layers are often clustered by K-means algorithm. However, due to the K-means algorithm’s dependence on the initial cluster center, it is too sensitive to noisy data. This paper proposes an RBF neural network based on K-nearest neighbors optimized clustering algorithm by fast search and finding the density peaks of a dataset(KNN-DPC). First, the optimized KNN-DPC algorithm is used to cluster data with too many noisy points, then the basis function center of RBF neural network is obtained, finally, the RBF neural network is constructed. The accuracy of this algorithm is verified by simulation experiments, and the results show that the algorithm is effective and practical.","PeriodicalId":129861,"journal":{"name":"2018 International Conference on Information Systems and Computer Aided Education (ICISCAE)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information Systems and Computer Aided Education (ICISCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCAE.2018.8666828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In RBF neural networks, the basis functions of hidden layers are often clustered by K-means algorithm. However, due to the K-means algorithm’s dependence on the initial cluster center, it is too sensitive to noisy data. This paper proposes an RBF neural network based on K-nearest neighbors optimized clustering algorithm by fast search and finding the density peaks of a dataset(KNN-DPC). First, the optimized KNN-DPC algorithm is used to cluster data with too many noisy points, then the basis function center of RBF neural network is obtained, finally, the RBF neural network is constructed. The accuracy of this algorithm is verified by simulation experiments, and the results show that the algorithm is effective and practical.
基于KNN-DPC的RBF神经网络设计方法
在RBF神经网络中,隐层基函数通常采用K-means算法聚类。然而,由于K-means算法依赖于初始聚类中心,对噪声数据过于敏感。本文提出了一种基于k近邻优化聚类算法的RBF神经网络,通过快速搜索和发现数据集的密度峰(KNN-DPC)。首先利用优化后的KNN-DPC算法对噪声点过多的数据进行聚类,然后得到RBF神经网络的基函数中心,最后构造RBF神经网络。仿真实验验证了该算法的准确性,结果表明该算法是有效和实用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信