{"title":"High velocity lamb waves in LiTaO3 thin plate for high frequency filters","authors":"Najoua Assila, M. Kadota, Y. Ohashi, Shuji Tanaka","doi":"10.1109/FCS.2016.7546796","DOIUrl":null,"url":null,"abstract":"First anti-symmetric (A<sub>1</sub>) mode Lamb wave propagating in a LiTaO<sub>3</sub> thin plate at an Euler angle around (0°, 45°, 0°) has a high velocity. Both phase velocity and electromechanical coupling factor have been evaluated at different propagation angles (0°, 45°, ψ°). A<sub>1</sub> mode Lamb wave at (0°, 45°, 0°) offers the highest velocity and largest electromechanical coupling factor, thus proving suitable for high frequency devices. Leaky Lamb waves' velocities have been measured for A<sub>0</sub> and zero-th symmetric (S<sub>0</sub>) modes at different propagation angles by ultrasonic microscopy and are almost similar to the calculated Lamb wave velocities. Whereas Ai mode Lamb wave response has been evaluated at (0°, 42°, 0°), (0°, 42°, 45°) and (0°, 42°, 90°) using a network analyzer. The influence of Al-interdigital transducers' (IDT) thickness on the reflection coefficient has been evaluated for thin (0°, 39°, 0°) LiTaO<sub>3</sub>. An IDT's thickness larger than 0.03λ (λ is the wavelength) is needed to fabricate A<sub>1</sub> mode Lamb wave resonators.","PeriodicalId":122928,"journal":{"name":"2016 IEEE International Frequency Control Symposium (IFCS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Frequency Control Symposium (IFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCS.2016.7546796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
First anti-symmetric (A1) mode Lamb wave propagating in a LiTaO3 thin plate at an Euler angle around (0°, 45°, 0°) has a high velocity. Both phase velocity and electromechanical coupling factor have been evaluated at different propagation angles (0°, 45°, ψ°). A1 mode Lamb wave at (0°, 45°, 0°) offers the highest velocity and largest electromechanical coupling factor, thus proving suitable for high frequency devices. Leaky Lamb waves' velocities have been measured for A0 and zero-th symmetric (S0) modes at different propagation angles by ultrasonic microscopy and are almost similar to the calculated Lamb wave velocities. Whereas Ai mode Lamb wave response has been evaluated at (0°, 42°, 0°), (0°, 42°, 45°) and (0°, 42°, 90°) using a network analyzer. The influence of Al-interdigital transducers' (IDT) thickness on the reflection coefficient has been evaluated for thin (0°, 39°, 0°) LiTaO3. An IDT's thickness larger than 0.03λ (λ is the wavelength) is needed to fabricate A1 mode Lamb wave resonators.