Experimental comparison of model-based robot position control strategies

G. Alici, R. Daniel
{"title":"Experimental comparison of model-based robot position control strategies","authors":"G. Alici, R. Daniel","doi":"10.1109/IROS.1993.583082","DOIUrl":null,"url":null,"abstract":"An experimental comparison of model-based joint space position control (JSPC) and Cartesian space position control (CSPC) strategies for the same manipulator, trajectory, sample rate, and dynamic model is presented. It is shown that the achievable tracking performance (in terms of the peak tracking error) and disturbance rejection capability of JSPC was experimentally better than that of CSPC for the same sample rate. High feedback gains for CSPC were found to be unachievable, which the authors suggest is due to the incompatibility between actuation and control space. The effect of varying the trajectory velocity, and of using a diagonal or full mass matrix in the control torque computation on the performance of the both strategies is also presented.","PeriodicalId":299306,"journal":{"name":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1993.583082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

An experimental comparison of model-based joint space position control (JSPC) and Cartesian space position control (CSPC) strategies for the same manipulator, trajectory, sample rate, and dynamic model is presented. It is shown that the achievable tracking performance (in terms of the peak tracking error) and disturbance rejection capability of JSPC was experimentally better than that of CSPC for the same sample rate. High feedback gains for CSPC were found to be unachievable, which the authors suggest is due to the incompatibility between actuation and control space. The effect of varying the trajectory velocity, and of using a diagonal or full mass matrix in the control torque computation on the performance of the both strategies is also presented.
基于模型的机器人位置控制策略的实验比较
针对相同的机械臂、轨迹、采样率和动力学模型,对基于模型的关节空间位置控制(JSPC)和笛卡尔空间位置控制(CSPC)策略进行了实验比较。实验结果表明,在相同采样率下,JSPC的可实现跟踪性能(就峰值跟踪误差而言)和抗干扰能力均优于CSPC。高反馈增益的CSPC被发现是无法实现的,作者认为这是由于驱动和控制空间之间的不兼容。研究了轨迹速度变化、控制转矩计算中使用对角矩阵或全质量矩阵对两种策略性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信