S. Shiratake, D. Takashima, T. Hasegawa, H. Nakano, Y. Oowaki, S. Watanabe, K. Ohuchi, F. Masuoka
{"title":"A Staggered Nand Dram Array Architecture For A Gbit Scale Integration","authors":"S. Shiratake, D. Takashima, T. Hasegawa, H. Nakano, Y. Oowaki, S. Watanabe, K. Ohuchi, F. Masuoka","doi":"10.1109/VLSIC.1994.586223","DOIUrl":null,"url":null,"abstract":"Cascade arrangement of DRAM cells, NAND structured DRAM cell, have already been proposed to reduce the cell size[l] and the experimental 256Mbit chip has been fabricated to demonstrate a small chip size[2]. However, realizing IGbit or further, the NAND DRAM faces a crucial array noise problem due to its open bitline (BL) array arrangement which has larger array noise than the folded BL arrangement[3]. The conventional NAND DRAM inevitably adopts the open BL arrangement, because memory cells are placed a t all the intersection between wordlines and bitlines, so all the BL’s receive the cell data when a wordline is activated, accordingly reference BL’s cannot be arranged in the same memory mat. To overcome this problem, we propose a Staggered NAND DRAM array architecture which realizes folded BL scheme in a NAND DRAM.","PeriodicalId":350730,"journal":{"name":"Proceedings of 1994 IEEE Symposium on VLSI Circuits","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.1994.586223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Cascade arrangement of DRAM cells, NAND structured DRAM cell, have already been proposed to reduce the cell size[l] and the experimental 256Mbit chip has been fabricated to demonstrate a small chip size[2]. However, realizing IGbit or further, the NAND DRAM faces a crucial array noise problem due to its open bitline (BL) array arrangement which has larger array noise than the folded BL arrangement[3]. The conventional NAND DRAM inevitably adopts the open BL arrangement, because memory cells are placed a t all the intersection between wordlines and bitlines, so all the BL’s receive the cell data when a wordline is activated, accordingly reference BL’s cannot be arranged in the same memory mat. To overcome this problem, we propose a Staggered NAND DRAM array architecture which realizes folded BL scheme in a NAND DRAM.