Adaptive Quantum-inspired Evolution Strategy

Hamid Izadinia, M. Ebadzadeh
{"title":"Adaptive Quantum-inspired Evolution Strategy","authors":"Hamid Izadinia, M. Ebadzadeh","doi":"10.1109/CEC.2012.6256433","DOIUrl":null,"url":null,"abstract":"Standard Evolution Strategy (ES) produces the next generation via the Gaussian mutation that is not directed toward the optimum. Additionally, self-adaptation mechanism is used in the standard ES to adapt mutation step-size. This paper presents a new evolution strategy which is called Quantum-inspired Evolution Strategy (QES). QES applies a new learning mechanism whereby the information of the mutants is used as a feedback to adapt the mutation direction and step-size simultaneously. To demonstrate the effectiveness of the proposed method, several experiments on a set of numerical optimization problems are carried out and the results are compared with the standard ES and Covariance Matrix Adaptation ES (CMA-ES) which is the state-of-the-art method for adaptive mutation. The results reveal that QES is superior to standard ES and CMA-ES in terms of convergence speed and accuracy.","PeriodicalId":376837,"journal":{"name":"2012 IEEE Congress on Evolutionary Computation","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2012.6256433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Standard Evolution Strategy (ES) produces the next generation via the Gaussian mutation that is not directed toward the optimum. Additionally, self-adaptation mechanism is used in the standard ES to adapt mutation step-size. This paper presents a new evolution strategy which is called Quantum-inspired Evolution Strategy (QES). QES applies a new learning mechanism whereby the information of the mutants is used as a feedback to adapt the mutation direction and step-size simultaneously. To demonstrate the effectiveness of the proposed method, several experiments on a set of numerical optimization problems are carried out and the results are compared with the standard ES and Covariance Matrix Adaptation ES (CMA-ES) which is the state-of-the-art method for adaptive mutation. The results reveal that QES is superior to standard ES and CMA-ES in terms of convergence speed and accuracy.
自适应量子进化策略
标准进化策略(ES)通过高斯突变产生下一代,而不是朝着最优方向发展。此外,标准ES采用自适应机制来适应突变步长。本文提出了一种新的进化策略——量子启发进化策略(QES)。QES采用了一种新的学习机制,利用突变体的信息作为反馈,同时调整突变方向和步长。为了验证该方法的有效性,对一组数值优化问题进行了实验,并将实验结果与标准ES和最先进的自适应突变方法协方差矩阵自适应ES (CMA-ES)进行了比较。结果表明,QES在收敛速度和精度上均优于标准ES和CMA-ES。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信