Skeleton-based design and simulation flow for Computation-in-Memory architectures

Jintao Yu, R. Nane, Adib Haron, S. Hamdioui, H. Corporaal, K. Bertels
{"title":"Skeleton-based design and simulation flow for Computation-in-Memory architectures","authors":"Jintao Yu, R. Nane, Adib Haron, S. Hamdioui, H. Corporaal, K. Bertels","doi":"10.1145/2950067.2950071","DOIUrl":null,"url":null,"abstract":"Memristor-based Computation-in-Memory is one of the emerging architectures proposed to deal with Big Data problems. The design of such architectures requires a radically new automatic design flow because the memristor is a passive device that uses resistance to encode its logic value. This paper proposes a design flow for mapping parallel algorithms on the CIM architecture. Algorithms with similar data flow graphs can be mapped on the crossbar using the same template containing scheduling, placement, and routing information; this template is named skeleton. By configuring such a skeleton with different pre-designed circuits, we can build CIM implementations of the corresponding algorithms in that class. This approach does not only map an algorithm on a memristor crossbar, but also gives an estimation of its performance, area, and energy consumption. It also supports user-defined constraints and parallel SystemC simulation. Experimental results demonstrate the feasibility and the potential of the approach.","PeriodicalId":213559,"journal":{"name":"2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950067.2950071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Memristor-based Computation-in-Memory is one of the emerging architectures proposed to deal with Big Data problems. The design of such architectures requires a radically new automatic design flow because the memristor is a passive device that uses resistance to encode its logic value. This paper proposes a design flow for mapping parallel algorithms on the CIM architecture. Algorithms with similar data flow graphs can be mapped on the crossbar using the same template containing scheduling, placement, and routing information; this template is named skeleton. By configuring such a skeleton with different pre-designed circuits, we can build CIM implementations of the corresponding algorithms in that class. This approach does not only map an algorithm on a memristor crossbar, but also gives an estimation of its performance, area, and energy consumption. It also supports user-defined constraints and parallel SystemC simulation. Experimental results demonstrate the feasibility and the potential of the approach.
内存计算架构的基于骨架的设计和仿真流程
基于忆阻器的内存计算是处理大数据问题的新兴架构之一。这种结构的设计需要一个全新的自动设计流程,因为忆阻器是一种使用电阻编码其逻辑值的无源器件。本文提出了一种在CIM架构上映射并行算法的设计流程。具有类似数据流图的算法可以使用包含调度、放置和路由信息的相同模板映射到横杆上;这个模板被命名为skeleton。通过用不同的预先设计的电路配置这样的框架,我们可以在该类中构建相应算法的CIM实现。该方法不仅将算法映射到忆阻交叉棒上,而且还给出了其性能,面积和能耗的估计。它还支持用户定义的约束和并行SystemC仿真。实验结果证明了该方法的可行性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信