Machine Learning Model of an Intelligent Decision Support System in the Information Security Sphere

F. O. Fedin, O. V. Trubienko, Sergey V. Chiskidov
{"title":"Machine Learning Model of an Intelligent Decision Support System in the Information Security Sphere","authors":"F. O. Fedin, O. V. Trubienko, Sergey V. Chiskidov","doi":"10.1109/RusAutoCon49822.2020.9208122","DOIUrl":null,"url":null,"abstract":"The article defines an approach to solving the task of network traffic analysis in higher education establishments (HEE) with the aim of detecting information security threats (IST) to systems, services, and networks. The approach implies using a machine learning model which utilizes neural network technology to classify running network activity as normal or abnormal, the two predetermined classes. In order to determine initial data for teaching and testing the machine learning model a specific approach was designed. The approach implies determination of a local network element, installation of necessary software, network analysis under the circumstances of normal network activity, network analysis under the circumstances of abnormal network activity, data processing and formation of a representative teaching selection.","PeriodicalId":101834,"journal":{"name":"2020 International Russian Automation Conference (RusAutoCon)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Russian Automation Conference (RusAutoCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RusAutoCon49822.2020.9208122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article defines an approach to solving the task of network traffic analysis in higher education establishments (HEE) with the aim of detecting information security threats (IST) to systems, services, and networks. The approach implies using a machine learning model which utilizes neural network technology to classify running network activity as normal or abnormal, the two predetermined classes. In order to determine initial data for teaching and testing the machine learning model a specific approach was designed. The approach implies determination of a local network element, installation of necessary software, network analysis under the circumstances of normal network activity, network analysis under the circumstances of abnormal network activity, data processing and formation of a representative teaching selection.
信息安全领域智能决策支持系统的机器学习模型
本文定义了一种方法来解决高等教育机构(HEE)的网络流量分析任务,目的是检测系统、服务和网络的信息安全威胁(IST)。该方法意味着使用机器学习模型,该模型利用神经网络技术将运行的网络活动分类为正常或异常,这是两个预定的类别。为了确定教学和测试机器学习模型的初始数据,设计了一种特定的方法。该方法包括确定局部网元、安装必要的软件、正常网络活动情况下的网络分析、异常网络活动情况下的网络分析、数据处理和形成代表性教学选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信