Fast and Easy Computation of Approximate Smallest Enclosing Balls

T. Martinetz, A. M. Mamlouk, C. Mota
{"title":"Fast and Easy Computation of Approximate Smallest Enclosing Balls","authors":"T. Martinetz, A. M. Mamlouk, C. Mota","doi":"10.1109/SIBGRAPI.2006.20","DOIUrl":null,"url":null,"abstract":"The incremental Badoiu-Clarkson algorithm finds the smallest ball enclosing n points in d dimensions with at least O(1/radict) precision, after t iteration steps. The extremely simple incremental step of the algorithm makes it very attractive both for theoreticians and practitioners. A simplified proof for this convergence is given. This proof allows to show that the precision increases, in fact, even as O(u/t) with the number of iteration steps. Computer experiments, but not yet a proof, suggest that the u, which depends only on the data instance, is actually bounded by min{radic2d, radic2n}. If it holds, then the algorithm finds the smallest enclosing ball with epsi precision in at most 0(ndradic/dm/epsi) time, with dm = min{d, n}","PeriodicalId":253871,"journal":{"name":"2006 19th Brazilian Symposium on Computer Graphics and Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 19th Brazilian Symposium on Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRAPI.2006.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The incremental Badoiu-Clarkson algorithm finds the smallest ball enclosing n points in d dimensions with at least O(1/radict) precision, after t iteration steps. The extremely simple incremental step of the algorithm makes it very attractive both for theoreticians and practitioners. A simplified proof for this convergence is given. This proof allows to show that the precision increases, in fact, even as O(u/t) with the number of iteration steps. Computer experiments, but not yet a proof, suggest that the u, which depends only on the data instance, is actually bounded by min{radic2d, radic2n}. If it holds, then the algorithm finds the smallest enclosing ball with epsi precision in at most 0(ndradic/dm/epsi) time, with dm = min{d, n}
近似最小封闭球的快速简便计算
增量Badoiu-Clarkson算法经过t次迭代,以至少0(1/根号)的精度找到d维中包含n个点的最小球。该算法极其简单的增量步骤使其对理论家和实践者都非常有吸引力。给出了这种收敛性的一个简化证明。这个证明表明,精度实际上随着迭代步骤的增加而增加,即使是O(u/t)。计算机实验,但还没有证明,表明仅依赖于数据实例的u,实际上是由min{radic2d, radic2n}限定的。如果成立,则算法在不超过0(ndradic/dm/epsi)时间内找到具有epsi精度的最小封闭球,dm = min{d, n}
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信