Automated phonetic transcription of Croatian folklore genres using supervised machine learning

Nikola Bakaric, Davor Nikolić
{"title":"Automated phonetic transcription of Croatian folklore genres using supervised machine learning","authors":"Nikola Bakaric, Davor Nikolić","doi":"10.17234/INFUTURE.2019.16","DOIUrl":null,"url":null,"abstract":"This paper aims to detect the possibilities of automatic text transcription for the purpose of preparing a corpus for further natural language processing analysis. The corpus contains various Croatian folklore genres. The transcription goal is to have one character represent one phoneme and remove spaces between accentuated and non-accentuated words. This knowledge independent system is trained using supervised learning methods and applied to the rest of the corpus using classifiers such as the naïve Bayes, k-nearest neighbour, support vector machine and others. The results are compared to a human-annotated sample to determine accuracy.","PeriodicalId":286092,"journal":{"name":"INFuture2019: Knowledge in the Digital Age","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFuture2019: Knowledge in the Digital Age","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17234/INFUTURE.2019.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper aims to detect the possibilities of automatic text transcription for the purpose of preparing a corpus for further natural language processing analysis. The corpus contains various Croatian folklore genres. The transcription goal is to have one character represent one phoneme and remove spaces between accentuated and non-accentuated words. This knowledge independent system is trained using supervised learning methods and applied to the rest of the corpus using classifiers such as the naïve Bayes, k-nearest neighbour, support vector machine and others. The results are compared to a human-annotated sample to determine accuracy.
使用监督机器学习的克罗地亚民俗类型的自动语音转录
本文旨在检测自动文本转录的可能性,以便为进一步的自然语言处理分析准备语料库。语料库包含各种克罗地亚民间传说流派。转录目标是让一个字符代表一个音素,并删除重音和非重音单词之间的空格。该知识独立系统使用监督学习方法进行训练,并使用naïve贝叶斯、k近邻、支持向量机等分类器将其应用于语料库的其余部分。将结果与人类注释的样本进行比较以确定准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信