Flexible Multi-Precision Accelerator Design for Deep Convolutional Neural Networks Considering Both Data Computation and Communication

Shen-Fu Hsiao, Yu-Hong Chen
{"title":"Flexible Multi-Precision Accelerator Design for Deep Convolutional Neural Networks Considering Both Data Computation and Communication","authors":"Shen-Fu Hsiao, Yu-Hong Chen","doi":"10.1109/VLSI-DAT49148.2020.9196465","DOIUrl":null,"url":null,"abstract":"Due to the quick advance in deep convolutional neural networks (CNN), hardware acceleration of convolution computations for edge devices is crucial for many artificial intelligence applications. This paper presents a CNN accelerator design that supports various CNN filter sizes/strides and different bit precisions. In particular, we analyze the latency of data communication and computation and determine the proper precision that maximizes the utilization efficiency of available hardware resource. The proposed design supports data precision of 8-bit and 16-bit, and weight precision of 2-bit, 4-bit, 8-bit, and 16-bit for popular CNN models. It can effectively increase speed performance of low-precision computation by exploiting the additional parallelism.","PeriodicalId":235460,"journal":{"name":"2020 International Symposium on VLSI Design, Automation and Test (VLSI-DAT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on VLSI Design, Automation and Test (VLSI-DAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-DAT49148.2020.9196465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to the quick advance in deep convolutional neural networks (CNN), hardware acceleration of convolution computations for edge devices is crucial for many artificial intelligence applications. This paper presents a CNN accelerator design that supports various CNN filter sizes/strides and different bit precisions. In particular, we analyze the latency of data communication and computation and determine the proper precision that maximizes the utilization efficiency of available hardware resource. The proposed design supports data precision of 8-bit and 16-bit, and weight precision of 2-bit, 4-bit, 8-bit, and 16-bit for popular CNN models. It can effectively increase speed performance of low-precision computation by exploiting the additional parallelism.
考虑数据计算和通信的深度卷积神经网络柔性多精度加速器设计
由于深度卷积神经网络(CNN)的快速发展,边缘设备卷积计算的硬件加速对于许多人工智能应用至关重要。本文提出了一种支持各种CNN滤波器尺寸/步长和不同位精度的CNN加速器设计。特别地,我们分析了数据通信和计算的延迟,并确定了适当的精度,以最大限度地提高可用硬件资源的利用率。本设计支持常用CNN模型的8位和16位数据精度,以及2位、4位、8位和16位权重精度。利用额外的并行性,可以有效地提高低精度计算的速度性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信