Mirror arithmetic

Jean P. Chinal
{"title":"Mirror arithmetic","authors":"Jean P. Chinal","doi":"10.1109/ARITH.1975.6156975","DOIUrl":null,"url":null,"abstract":"Mirror coding for signed numbers is defined \"by means pf a set of primitive powers of two {+2<sup>n</sup>, −2<sup>n−1</sup>, …−2°} where signs of the usual set used in 2's complement representation are reversed. Use of the mirror representation is shown as an alternate design approach and is illustrated \"by a special purpose adder design in mirror code, by an alternate proof of a basic property of sign-ed-digit arithmetic and as another interpretation of cells used in some array multipliers for signed numbers. Lastly, the concept is used to define a variable mode redundant coding, allowing simple sign-flipping without overflow.","PeriodicalId":360742,"journal":{"name":"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1975-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1975.6156975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mirror coding for signed numbers is defined "by means pf a set of primitive powers of two {+2n, −2n−1, …−2°} where signs of the usual set used in 2's complement representation are reversed. Use of the mirror representation is shown as an alternate design approach and is illustrated "by a special purpose adder design in mirror code, by an alternate proof of a basic property of sign-ed-digit arithmetic and as another interpretation of cells used in some array multipliers for signed numbers. Lastly, the concept is used to define a variable mode redundant coding, allowing simple sign-flipping without overflow.
镜子算术
有符号数的镜像编码是通过2的基本幂的集合{+2n,−2n−1,…−2°}来定义的,其中2的补码表示中使用的通常集合的符号是颠倒的。镜像表示法的使用是另一种设计方法,并通过镜像代码中的特殊目的加法器设计,符号数字算术的基本性质的替代证明以及在一些符号数字的数组乘法器中使用的另一种解释来说明。最后,该概念用于定义可变模式冗余编码,允许简单的符号翻转而不会溢出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信