Noise considerations in circuit optimization

C. Visweswariah, R. Haring, A. Conn
{"title":"Noise considerations in circuit optimization","authors":"C. Visweswariah, R. Haring, A. Conn","doi":"10.1145/288548.288617","DOIUrl":null,"url":null,"abstract":"Noise can cause digital circuits to switch incorrectly and thus produce spurious results. Noise can also have adverse power, timing and reliability effects. Dynamic logic is particularly susceptible to charge-sharing and coupling noise. Thus, the design and optimization of a circuit should take noise considerations into account. Such considerations are typically stated as semi-infinite constraints. In addition, the number of signals to be checked and the number of sub-intervals of time during which the checking must be performed can potentially be very large. Thus, the practical incorporation of noise constraints during circuit optimization is a hitherto unsolved problem. This paper describes a novel method for incorporating noise considerations during automatic circuit optimization. Semi-infinite constraints representing noise considerations are first converted to ordinary equality constraints involving time integrals, which are readily computed in the context of circuit optimization based on time-domain simulation. Next, the gradients of these integrals are computed by the adjoint method. By using an augmented Lagrangian optimization merit function, the adjoint method is applied to compute all the necessary gradients required for optimization in a single adjoint analysis, no matter how many noise measurements are considered, and irrespective of the dimensionality of the problem. Numerical results are presented.","PeriodicalId":224802,"journal":{"name":"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/288548.288617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

Noise can cause digital circuits to switch incorrectly and thus produce spurious results. Noise can also have adverse power, timing and reliability effects. Dynamic logic is particularly susceptible to charge-sharing and coupling noise. Thus, the design and optimization of a circuit should take noise considerations into account. Such considerations are typically stated as semi-infinite constraints. In addition, the number of signals to be checked and the number of sub-intervals of time during which the checking must be performed can potentially be very large. Thus, the practical incorporation of noise constraints during circuit optimization is a hitherto unsolved problem. This paper describes a novel method for incorporating noise considerations during automatic circuit optimization. Semi-infinite constraints representing noise considerations are first converted to ordinary equality constraints involving time integrals, which are readily computed in the context of circuit optimization based on time-domain simulation. Next, the gradients of these integrals are computed by the adjoint method. By using an augmented Lagrangian optimization merit function, the adjoint method is applied to compute all the necessary gradients required for optimization in a single adjoint analysis, no matter how many noise measurements are considered, and irrespective of the dimensionality of the problem. Numerical results are presented.
电路优化中的噪声考虑
噪声会导致数字电路开关不正确,从而产生伪结果。噪声还会对功率、时序和可靠性产生不利影响。动态逻辑特别容易受到电荷共享和耦合噪声的影响。因此,电路的设计和优化应考虑噪声。这种考虑通常被描述为半无限约束。此外,要检查的信号数量和必须执行检查的子时间间隔的数量可能非常大。因此,在电路优化过程中实际纳入噪声约束是一个迄今尚未解决的问题。本文介绍了一种在自动电路优化过程中考虑噪声因素的新方法。首先将考虑噪声的半无限约束转换为涉及时间积分的普通等式约束,以便在基于时域仿真的电路优化环境中易于计算。然后,用伴随法计算这些积分的梯度。通过使用增广拉格朗日优化优点函数,无论考虑多少噪声测量,也无论问题的维数如何,都可以应用伴随方法计算单个伴随分析中优化所需的所有必要梯度。给出了数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信