B. Salim, Nabila MutassimMurad, Zahra - Abdelmagid
{"title":"Prediction of an Epitope-Based Vaccine Against Human Immunodeficiency Virus (HIV) an in silicoApproach","authors":"B. Salim, Nabila MutassimMurad, Zahra - Abdelmagid","doi":"10.29011/2575-789x.000110","DOIUrl":null,"url":null,"abstract":"Human Immunodeficiency Virus (HIV) is the causative agent of the Acquired Immunodeficiency Syndrome (AIDS). The disease is a major global public health threat that causes over 39 million deaths in 78 million cases ever since it was discovered. To date, there is no vaccine available for prevention, and most of the efforts were directed towards the conventional vaccines approaches. Thus, in the present study, an alternative newly emerging in silico approach for designing peptide-based vaccines has been sought. This immune informatics approach has several advantages regarding the safety, stability and the ease to manufacture. We designed a potential multi-epitope vaccine against HIV-1 purposely for the most endemic sub-Saharan African countries. Three essential structural genes that include envelope ( Env ), group specific antigen ( Gag ) and polymerase ( Pol ) protein sequences were retrieved from the databases, analyzed and verified through a total of 15 in silico tools. This resulted in nine antigenic and non-allergic potential epitopes capable to provoke both humoral and cell mediated immunity without induction of autoimmunity. These epitopes covered 76.57% of the world population with a high sequence conservancy varies from 80-97%. Furthermore, computational docking techniques were used to confirm the strong binding interactions of the epitopes with their specific HLA molecules. Albeit, the results are awaiting validations by in vitro and in vivo experiments, nonetheless, this study provides a useful insight for the developing of successful vaccines to prevent the devastating HIV infections.","PeriodicalId":386740,"journal":{"name":"Journal of Vaccines, Immunology and Immunopathology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vaccines, Immunology and Immunopathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29011/2575-789x.000110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Human Immunodeficiency Virus (HIV) is the causative agent of the Acquired Immunodeficiency Syndrome (AIDS). The disease is a major global public health threat that causes over 39 million deaths in 78 million cases ever since it was discovered. To date, there is no vaccine available for prevention, and most of the efforts were directed towards the conventional vaccines approaches. Thus, in the present study, an alternative newly emerging in silico approach for designing peptide-based vaccines has been sought. This immune informatics approach has several advantages regarding the safety, stability and the ease to manufacture. We designed a potential multi-epitope vaccine against HIV-1 purposely for the most endemic sub-Saharan African countries. Three essential structural genes that include envelope ( Env ), group specific antigen ( Gag ) and polymerase ( Pol ) protein sequences were retrieved from the databases, analyzed and verified through a total of 15 in silico tools. This resulted in nine antigenic and non-allergic potential epitopes capable to provoke both humoral and cell mediated immunity without induction of autoimmunity. These epitopes covered 76.57% of the world population with a high sequence conservancy varies from 80-97%. Furthermore, computational docking techniques were used to confirm the strong binding interactions of the epitopes with their specific HLA molecules. Albeit, the results are awaiting validations by in vitro and in vivo experiments, nonetheless, this study provides a useful insight for the developing of successful vaccines to prevent the devastating HIV infections.