{"title":"The influence of charge carrier quantum transport and isoenergy surface anisotropy on the high-frequency conductivity of a semiconductor nanolayer","authors":"O. Savenko, I. A. Kuznetsova","doi":"10.1117/12.2622544","DOIUrl":null,"url":null,"abstract":"A theoretical model of the high-frequency electrical conductivity of a semiconductor nanolayer is constructed within the framework of the quantum theory of transport phenomena. The layer thickness can be comparable to and less than the de Broglie wavelength of charge carriers. The isoenergy surface has the shape of an ellipsoid of revolution, the main axis of which is parallel to the layer plane. Analytical expressions are derived for the conductivity tensor components as a function of dimensionless thickness, electric field frequency, chemical potential, ellipticity parameter, and surface roughness parameters. The dependences of the longitudinal and transverse conductivity tensor components on the above parameters are analyzed. The results are compared for the cases of a degenerate and non-degenerate electron gas. A comparative analysis of theoretical calculations with known experimental data for a silicon film is performed.","PeriodicalId":388511,"journal":{"name":"International Conference on Micro- and Nano-Electronics","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Micro- and Nano-Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2622544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A theoretical model of the high-frequency electrical conductivity of a semiconductor nanolayer is constructed within the framework of the quantum theory of transport phenomena. The layer thickness can be comparable to and less than the de Broglie wavelength of charge carriers. The isoenergy surface has the shape of an ellipsoid of revolution, the main axis of which is parallel to the layer plane. Analytical expressions are derived for the conductivity tensor components as a function of dimensionless thickness, electric field frequency, chemical potential, ellipticity parameter, and surface roughness parameters. The dependences of the longitudinal and transverse conductivity tensor components on the above parameters are analyzed. The results are compared for the cases of a degenerate and non-degenerate electron gas. A comparative analysis of theoretical calculations with known experimental data for a silicon film is performed.