Leila Tlebaldiyeva, S. Arzykulov, T. Tsiftsis, G. Nauryzbayev
{"title":"Full-Duplex Cooperative NOMA-based mmWave Networks with Fluid Antenna System (FAS) Receivers","authors":"Leila Tlebaldiyeva, S. Arzykulov, T. Tsiftsis, G. Nauryzbayev","doi":"10.1109/BalkanCom58402.2023.10167904","DOIUrl":null,"url":null,"abstract":"The high-penetration path loss and distance are the major limiting factors of the millimeter wave (mmWave) technology. It consequently requires a line-of-sight environment to accommodate the source and destination nodes, while the presence of in-between obstacles becomes inevitable due to the ever-increasing densification of modern wireless networks. Nonorthogonal multiple access (NOMA) and fluid antenna system (FAS) can play important roles in expanding the range of communication. We propose an N-user NOMA network that utilizes the base station’s resources efficiently and implements cooperative full-duplex communication. Furthermore, the considered L-port FAS technique improves the quality-of-service by designing a flexible and low-profile antenna for mobile users. Simulation results reveal that 10-port FAS outperforms the selection combining technique while requiring around 600 ports to beat the performance of a four-antenna maximum-ratio-combining scheme. Finally, we formulate the outage probability expressions considering residual self-interference and interference, which are validated through Monte Carlo simulations.","PeriodicalId":363999,"journal":{"name":"2023 International Balkan Conference on Communications and Networking (BalkanCom)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Balkan Conference on Communications and Networking (BalkanCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BalkanCom58402.2023.10167904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The high-penetration path loss and distance are the major limiting factors of the millimeter wave (mmWave) technology. It consequently requires a line-of-sight environment to accommodate the source and destination nodes, while the presence of in-between obstacles becomes inevitable due to the ever-increasing densification of modern wireless networks. Nonorthogonal multiple access (NOMA) and fluid antenna system (FAS) can play important roles in expanding the range of communication. We propose an N-user NOMA network that utilizes the base station’s resources efficiently and implements cooperative full-duplex communication. Furthermore, the considered L-port FAS technique improves the quality-of-service by designing a flexible and low-profile antenna for mobile users. Simulation results reveal that 10-port FAS outperforms the selection combining technique while requiring around 600 ports to beat the performance of a four-antenna maximum-ratio-combining scheme. Finally, we formulate the outage probability expressions considering residual self-interference and interference, which are validated through Monte Carlo simulations.