{"title":"High-performance NTT architecture for large integer multiplication","authors":"Jheng-Hao Ye, Ming-Der Shieh","doi":"10.1109/VLSI-DAT.2018.8373254","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient architecture of number Theoretical transform (NTT), targeting at fulfilling large integer multiplication for fully homomorphic encryption applications. A systematic memory management scheme is proposed for the pipelined shared-memory NTT architecture implemented with mixed-radix multi-path delay commutators (MDCs). The presented data relocation scheme along with the MDC can be applied to merge multiple banks with single-port memory for further reducing the area requirement. Experimental results show that a 1,179,648-bit multiplier implemented by the proposed solution, including seamless data transfer among the building blocks, can lead to more than 39.8% area reduction with even a lower computational time as compared with the related works.","PeriodicalId":257565,"journal":{"name":"2018 International Symposium on VLSI Design, Automation and Test (VLSI-DAT)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on VLSI Design, Automation and Test (VLSI-DAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-DAT.2018.8373254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents an efficient architecture of number Theoretical transform (NTT), targeting at fulfilling large integer multiplication for fully homomorphic encryption applications. A systematic memory management scheme is proposed for the pipelined shared-memory NTT architecture implemented with mixed-radix multi-path delay commutators (MDCs). The presented data relocation scheme along with the MDC can be applied to merge multiple banks with single-port memory for further reducing the area requirement. Experimental results show that a 1,179,648-bit multiplier implemented by the proposed solution, including seamless data transfer among the building blocks, can lead to more than 39.8% area reduction with even a lower computational time as compared with the related works.