Semiparametric GARCH Models with Long Memory Applied to Value at Risk and Expected Shortfall

Sebastian Letmathe, Yuanhua Feng, André Uhde
{"title":"Semiparametric GARCH Models with Long Memory Applied to Value at Risk and Expected Shortfall","authors":"Sebastian Letmathe, Yuanhua Feng, André Uhde","doi":"10.2139/ssrn.3823895","DOIUrl":null,"url":null,"abstract":"In this paper new semiparametric GARCH models with long memory are introduced. The estimation of the nonparametric scale function is carried out by an adapted version of the SEMIFAR algorithm (Beran et al., 2002). Recurring on the revised recommendations by the Basel Committee to measure market risk in the banks' trading books (Basel Committee on Banking Supervision, 2013), the semi- parametric GARCH models are applied to obtain rolling one-step ahead forecasts for the Value at Risk (VaR) and Expected Shortfall (ES) for market risk assets. In addition, standard regulatory traffic light tests (Basel Committee on Banking Supervision, 1996) and a newly introduced traffic light test for the ES are carried out for all models. The practical relevance of our proposal is demonstrated by a comparative study. Our results indicate that semiparametric long memory GARCH models are an attractive alternative to their conventional, parametric counterparts.","PeriodicalId":251522,"journal":{"name":"Risk Management & Analysis in Financial Institutions eJournal","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Management & Analysis in Financial Institutions eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3823895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper new semiparametric GARCH models with long memory are introduced. The estimation of the nonparametric scale function is carried out by an adapted version of the SEMIFAR algorithm (Beran et al., 2002). Recurring on the revised recommendations by the Basel Committee to measure market risk in the banks' trading books (Basel Committee on Banking Supervision, 2013), the semi- parametric GARCH models are applied to obtain rolling one-step ahead forecasts for the Value at Risk (VaR) and Expected Shortfall (ES) for market risk assets. In addition, standard regulatory traffic light tests (Basel Committee on Banking Supervision, 1996) and a newly introduced traffic light test for the ES are carried out for all models. The practical relevance of our proposal is demonstrated by a comparative study. Our results indicate that semiparametric long memory GARCH models are an attractive alternative to their conventional, parametric counterparts.
具有长记忆的半参数GARCH模型在风险价值和预期缺口中的应用
本文介绍了一种新的具有长记忆的半参数GARCH模型。非参数尺度函数的估计是由SEMIFAR算法的改编版本进行的(Beran et al., 2002)。根据巴塞尔委员会在银行交易账簿中衡量市场风险的修订建议(巴塞尔银行监管委员会,2013年),半参数GARCH模型被应用于获得市场风险资产的风险价值(VaR)和预期缺口(ES)的滚动一步预测。此外,对所有模型都进行了标准监管红绿灯测试(巴塞尔银行监管委员会,1996年)和新引入的ES红绿灯测试。一项比较研究证明了我们建议的实际意义。我们的研究结果表明,半参数长记忆GARCH模型是传统参数模型的一个有吸引力的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信