Fabrication and characterization of polysilicon nanogap device for DNA hybridization detection

U. Hashim
{"title":"Fabrication and characterization of polysilicon nanogap device for DNA hybridization detection","authors":"U. Hashim","doi":"10.1109/RSM.2013.6706567","DOIUrl":null,"url":null,"abstract":"Summary form only given. Fabrication and electrical characterization of 5-nm polysilicon gaps and their properties are discussed with their application in electrochemical sensors and biomolecule detection. To understand the relationship between the biosensor and nanotechnology we have carried out the fabrication and characterization of nanogap structures for DNA detection. In this paper, 2 mask designs are used. The first mask is for defining the lateral nanogap and the second mask is for the pad electrode pattern. Lateral nanogaps are formed using polysilicon and Au as the contact pad electrode. Conventional photolithography technique is used to fabricate the nanoogap structure. The electrical measurements are carried out using Dielectric Analyzer. The capacitance across the nanoogap was noted to change with probing and when target DNA solution is dropped between the gaps. The measured values of capacitance for the probe and target DNA solution are presented as a function of the frequency, where, the capacitance values were increased after immobilization of the target DNA and double increased after hybridization of the target DNA.","PeriodicalId":346255,"journal":{"name":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2013.6706567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary form only given. Fabrication and electrical characterization of 5-nm polysilicon gaps and their properties are discussed with their application in electrochemical sensors and biomolecule detection. To understand the relationship between the biosensor and nanotechnology we have carried out the fabrication and characterization of nanogap structures for DNA detection. In this paper, 2 mask designs are used. The first mask is for defining the lateral nanogap and the second mask is for the pad electrode pattern. Lateral nanogaps are formed using polysilicon and Au as the contact pad electrode. Conventional photolithography technique is used to fabricate the nanoogap structure. The electrical measurements are carried out using Dielectric Analyzer. The capacitance across the nanoogap was noted to change with probing and when target DNA solution is dropped between the gaps. The measured values of capacitance for the probe and target DNA solution are presented as a function of the frequency, where, the capacitance values were increased after immobilization of the target DNA and double increased after hybridization of the target DNA.
DNA杂交检测用多晶硅纳米隙器件的制备与表征
只提供摘要形式。讨论了5nm多晶硅隙的制备、电学特性及其在电化学传感器和生物分子检测中的应用。为了了解生物传感器和纳米技术之间的关系,我们进行了用于DNA检测的纳米间隙结构的制造和表征。本文采用了两种掩模设计。第一个掩模用于定义横向纳米间隙,第二个掩模用于衬垫电极图案。采用多晶硅和金作为接触垫电极形成横向纳米隙。采用传统的光刻技术制备纳米间隙结构。电学测量采用介电分析仪进行。通过纳米间隙的电容被注意到随着探测和目标DNA溶液在间隙之间下降而变化。探针和目标DNA溶液的电容测量值是频率的函数,其中,目标DNA固定后电容值增加,目标DNA杂交后电容值增加一倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信