Classification of Facial Expression Using Principal Component Analysis (PCA) Method and Support Vector Machine (SVM)

Intan Setiawati, Enny Itje Sela
{"title":"Classification of Facial Expression Using Principal Component Analysis (PCA) Method and Support Vector Machine (SVM)","authors":"Intan Setiawati, Enny Itje Sela","doi":"10.24203/ijcit.v11i1.205","DOIUrl":null,"url":null,"abstract":"Classification is a process to assert an object into one of defined categories. This study examines the classification of recognition of student’s facial expression during digital learning –indifferent and serious expression. The dataset used was from a vocational school -SMK Muhammadiyah 2 Bantul. This study used the combination of algorithm: Principal Component Analysis (PCA) and Support Vector Machine (SVM) to increase the accuracy. This study aims at comparing the performance of combination of two algorithm: (PCA to SVM) and (PCA to k-NN). The result  states that the combination of PCA-SVM algorithm is higher than the combination of PCA-k-NN algorithm with the average accuracy of 96% and 89%.","PeriodicalId":359510,"journal":{"name":"International Journal of Computer and Information Technology(2279-0764)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer and Information Technology(2279-0764)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24203/ijcit.v11i1.205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classification is a process to assert an object into one of defined categories. This study examines the classification of recognition of student’s facial expression during digital learning –indifferent and serious expression. The dataset used was from a vocational school -SMK Muhammadiyah 2 Bantul. This study used the combination of algorithm: Principal Component Analysis (PCA) and Support Vector Machine (SVM) to increase the accuracy. This study aims at comparing the performance of combination of two algorithm: (PCA to SVM) and (PCA to k-NN). The result  states that the combination of PCA-SVM algorithm is higher than the combination of PCA-k-NN algorithm with the average accuracy of 96% and 89%.
基于主成分分析和支持向量机的面部表情分类
分类是将对象断言为已定义的类别之一的过程。本研究探讨数位学习中学生面部表情识别的分类:冷漠与严肃。使用的数据集来自职业学校smk Muhammadiyah 2 Bantul。本研究采用主成分分析(PCA)与支持向量机(SVM)相结合的算法来提高准确率。本研究旨在比较(PCA to SVM)和(PCA to k-NN)两种算法组合的性能。结果表明,PCA-SVM组合算法的平均准确率分别为96%和89%,高于PCA-k-NN组合算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信