Stability chart of Hill's equation by a Sturm-Liouville approach

Nestor Aguillon, J. Collado
{"title":"Stability chart of Hill's equation by a Sturm-Liouville approach","authors":"Nestor Aguillon, J. Collado","doi":"10.1109/ICEEE.2016.7751252","DOIUrl":null,"url":null,"abstract":"This paper introduces a Sturm-Liouville based algorithm to compute the stability chart of Hill's equation. It will be shown that finding the borders of the instability tongues of Hill's equation can be set as a Sturm-Liouville boundary value problem, and how this problem can be set as an eigenvalue-eigenvector problem of a differential matrix LH using a finite-difference approximation of the first and second derivatives of a scalar function.","PeriodicalId":285464,"journal":{"name":"2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2016.7751252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a Sturm-Liouville based algorithm to compute the stability chart of Hill's equation. It will be shown that finding the borders of the instability tongues of Hill's equation can be set as a Sturm-Liouville boundary value problem, and how this problem can be set as an eigenvalue-eigenvector problem of a differential matrix LH using a finite-difference approximation of the first and second derivatives of a scalar function.
用Sturm-Liouville方法求解希尔方程的稳定性图
本文介绍了一种基于Sturm-Liouville的希尔方程稳定性图计算算法。将证明寻找Hill方程的不稳定曲线的边界可以设置为Sturm-Liouville边值问题,以及如何使用标量函数的一阶导数和二阶导数的有限差分近似将该问题设置为微分矩阵LH的特征值-特征向量问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信