Generalized diagonal 2D FLDA for efficient face recognition

J. Sing, D. Roy, D. K. Basu, M. Nasipuri
{"title":"Generalized diagonal 2D FLDA for efficient face recognition","authors":"J. Sing, D. Roy, D. K. Basu, M. Nasipuri","doi":"10.1109/CODIS.2012.6422283","DOIUrl":null,"url":null,"abstract":"This paper presents a novel generalized diagonal two-dimensional Fisher's linear discriminant (G-Dia2DFLD) analysis for face representation and recognition. The G-Dia2DFLD method is an extension of the existing DiaFLD method in two aspects. Firstly, the former seeks the maximum class separability by interlacing both the forward and backward diagonals of images simultaneously while the latter seeks optimal projection vectors either from forward or backward diagonal of images. Secondly, the DiaFLD method does not preserve continuity of image regions while generating the diagonal images; resulting partially diagonal images; whereas in G-Dia2DFLD method, this continuity is preserved by generating the diagonal images of the original images. The simulation results on the AT&T and AR databases demonstrate the superiority of the proposed G-Dia2DFLD method over the DiaFLD method and also some existing subspace methods.","PeriodicalId":274831,"journal":{"name":"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODIS.2012.6422283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a novel generalized diagonal two-dimensional Fisher's linear discriminant (G-Dia2DFLD) analysis for face representation and recognition. The G-Dia2DFLD method is an extension of the existing DiaFLD method in two aspects. Firstly, the former seeks the maximum class separability by interlacing both the forward and backward diagonals of images simultaneously while the latter seeks optimal projection vectors either from forward or backward diagonal of images. Secondly, the DiaFLD method does not preserve continuity of image regions while generating the diagonal images; resulting partially diagonal images; whereas in G-Dia2DFLD method, this continuity is preserved by generating the diagonal images of the original images. The simulation results on the AT&T and AR databases demonstrate the superiority of the proposed G-Dia2DFLD method over the DiaFLD method and also some existing subspace methods.
基于广义对角二维FLDA的高效人脸识别
提出了一种新的用于人脸表示和识别的广义对角二维Fisher线性判别(G-Dia2DFLD)分析方法。G-Dia2DFLD方法是对现有DiaFLD方法在两个方面的扩展。首先,前者通过同时交错图像的前向和后向对角线来寻求最大的类可分离性,而后者则从图像的前向或后向对角线中寻求最优投影向量。其次,DiaFLD方法在生成对角图像时不能保持图像区域的连续性;产生部分对角图像;而在G-Dia2DFLD方法中,通过生成原始图像的对角图像来保持这种连续性。在AT&T和AR数据库上的仿真结果表明,所提出的G-Dia2DFLD方法优于DiaFLD方法和现有的一些子空间方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信