CNN Learning for Image Processing: Center of Mass versus Genetic Algorithms

F. Andrade, E. Santana, A. Cunha, E. F. S. Filho, Gabriele Costa Goncalves, Antonio José Sobrinho de Sousa
{"title":"CNN Learning for Image Processing: Center of Mass versus Genetic Algorithms","authors":"F. Andrade, E. Santana, A. Cunha, E. F. S. Filho, Gabriele Costa Goncalves, Antonio José Sobrinho de Sousa","doi":"10.1109/LASCAS.2019.8667559","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative performance analysis of two learning algorithms developed for the use in Cellular Neural Networks (CNN): the Center of Mass Algorithm, a back-propagation like technique, and an adaptation of the Genetic Algorithm. Both methods are applied for the training of a CNN built with Full Signal Range (FSR) cells, for the implementation of several well-known bipolar functions of image processing. Performance parameters such as total execution time, number of CNN runs and success rate are assessed in order to provide guidelines for the learning method choice.","PeriodicalId":142430,"journal":{"name":"2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2019.8667559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a comparative performance analysis of two learning algorithms developed for the use in Cellular Neural Networks (CNN): the Center of Mass Algorithm, a back-propagation like technique, and an adaptation of the Genetic Algorithm. Both methods are applied for the training of a CNN built with Full Signal Range (FSR) cells, for the implementation of several well-known bipolar functions of image processing. Performance parameters such as total execution time, number of CNN runs and success rate are assessed in order to provide guidelines for the learning method choice.
CNN图像处理学习:质量中心与遗传算法
本文介绍了用于细胞神经网络(CNN)的两种学习算法的比较性能分析:质量中心算法,一种类似反向传播的技术,以及遗传算法的适应。这两种方法都被用于训练由全信号范围(FSR)单元构建的CNN,以实现图像处理中几个著名的双极函数。评估总执行时间、CNN运行次数和成功率等性能参数,为学习方法的选择提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信