Application of Bernstein Branch-and-Bound Method to PID Controls with Maximum Stability Degree

C. Hwang, Zong-Han Tsai, Lianhua Lu
{"title":"Application of Bernstein Branch-and-Bound Method to PID Controls with Maximum Stability Degree","authors":"C. Hwang, Zong-Han Tsai, Lianhua Lu","doi":"10.1109/ICSSE.2018.8520093","DOIUrl":null,"url":null,"abstract":"The stability degree of a stable control system is defined to be the negative of the largest real part of the zeros of its characteristic equation. In this paper, we consider the problem of tuning parameters of PID controller for delay-free linear time-invariant systems to maximize the degree of closed-loop stability. By applying the Bernstein branch-and-bound (BBB) method to test the existence of the stable region in the parameter space, a procedure is proposed to design maximum-stability PID controllers for linear time-invariant delay-free systems. The applicability of the BBB method here is based on fact that the stable region is characterized by a set of multi-variate polynomials in parameters, which is derived from the Lienard-Chipart criterion for a Hurwitz polynomial. An example of designing a PD controller with maximum stability-degree for a fourth-order system is given to verify the proposed approach.","PeriodicalId":431387,"journal":{"name":"2018 International Conference on System Science and Engineering (ICSSE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2018.8520093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The stability degree of a stable control system is defined to be the negative of the largest real part of the zeros of its characteristic equation. In this paper, we consider the problem of tuning parameters of PID controller for delay-free linear time-invariant systems to maximize the degree of closed-loop stability. By applying the Bernstein branch-and-bound (BBB) method to test the existence of the stable region in the parameter space, a procedure is proposed to design maximum-stability PID controllers for linear time-invariant delay-free systems. The applicability of the BBB method here is based on fact that the stable region is characterized by a set of multi-variate polynomials in parameters, which is derived from the Lienard-Chipart criterion for a Hurwitz polynomial. An example of designing a PD controller with maximum stability-degree for a fourth-order system is given to verify the proposed approach.
Bernstein分支定界法在最大稳定度PID控制中的应用
定义稳定控制系统的稳定度为其特征方程0的最大实部的负数。在本文中,我们考虑问题的调优参数的PID控制器delay-free线性定常系统的闭环稳定性程度最大化。利用Bernstein分支定界(BBB)方法检验参数空间中稳定区域的存在性,提出了一种线性时不变无延迟系统的最大稳定PID控制器设计方法。BBB方法在这里的适用性是基于这样一个事实,即稳定区域是由参数中的一组多变量多项式表征的,这些参数是由Hurwitz多项式的Lienard-Chipart准则导出的。最后给出了一个四阶系统最大稳定度PD控制器的设计实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信