Methods of Obtaining Geospatial Data Using Satellite Communications and Their Processing Using Convolutional Neural Networks

I. I. Tsvetkovskaya, N. V. Tekutieva, E. Prokofeva, A. Vostrikov
{"title":"Methods of Obtaining Geospatial Data Using Satellite Communications and Their Processing Using Convolutional Neural Networks","authors":"I. I. Tsvetkovskaya, N. V. Tekutieva, E. Prokofeva, A. Vostrikov","doi":"10.1109/MWENT47943.2020.9067413","DOIUrl":null,"url":null,"abstract":"The availability of high-resolution satellite images obtained through space radio communications offers the opportunity to use the most advanced technologies and techniques for analyzing remote sensing data. The paper discusses the data obtained with the use of ground-based, airborne or space-based filming equipment, which makes it possible to obtain images in one or several sections of the electromagnetic spectrum. This article provides an overview of existing artificial spacecraft and systems for obtaining space data. Also, there are the examples of the use of convolutional neural networks (CNN) for processing data obtained from artificial Earth satellites. CNN has a high learning ability and the capacity to automatically learn optimal functions based on the data.","PeriodicalId":122716,"journal":{"name":"2020 Moscow Workshop on Electronic and Networking Technologies (MWENT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Moscow Workshop on Electronic and Networking Technologies (MWENT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWENT47943.2020.9067413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The availability of high-resolution satellite images obtained through space radio communications offers the opportunity to use the most advanced technologies and techniques for analyzing remote sensing data. The paper discusses the data obtained with the use of ground-based, airborne or space-based filming equipment, which makes it possible to obtain images in one or several sections of the electromagnetic spectrum. This article provides an overview of existing artificial spacecraft and systems for obtaining space data. Also, there are the examples of the use of convolutional neural networks (CNN) for processing data obtained from artificial Earth satellites. CNN has a high learning ability and the capacity to automatically learn optimal functions based on the data.
利用卫星通信获取地理空间数据的方法及其卷积神经网络处理
通过空间无线电通信获得的高分辨率卫星图像提供了利用最先进技术和方法分析遥感数据的机会。本文讨论了利用地面、机载或天基拍摄设备获得的数据,这些设备可以获得电磁波谱的一个或几个部分的图像。本文概述了现有的用于获取空间数据的人造航天器和系统。此外,还有使用卷积神经网络(CNN)处理从人造地球卫星获得的数据的例子。CNN具有很高的学习能力,能够根据数据自动学习最优函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信