EEG Spectral Connectivity Analysis in a Large Clinical Population

David O. Nahmias, K. Kontson
{"title":"EEG Spectral Connectivity Analysis in a Large Clinical Population","authors":"David O. Nahmias, K. Kontson","doi":"10.1109/NER.2019.8716884","DOIUrl":null,"url":null,"abstract":"This study explores neural connectivity in resting state through coherence and spectral graph based methods across large populations with electroencephalography (EEG). Using the Neural Engineering Data Consortium (NEDC) EEG Corpus we extract EEG data in a 10-20 montage and accompanying patient characteristics. Non-medicated subjects with clinically normal EEG are used as the normative population (n=1,167) while a group with a similar age distribution of medicated subjects with clinically abnormal EEG are used as the abnormal population (n=2,940). Parameters and properties of spectral coherence connectivity graphs are computed across frequency bands. We establish default mode networks (DMN) for the different populations on several frequency bands. We find that frequency bands differ across the populations more than specific graph properties. However, we find that there is an increased level of connectivity in the abnormal population. These results may lead to neural connectivity based diagnostic aides.","PeriodicalId":356177,"journal":{"name":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2019.8716884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores neural connectivity in resting state through coherence and spectral graph based methods across large populations with electroencephalography (EEG). Using the Neural Engineering Data Consortium (NEDC) EEG Corpus we extract EEG data in a 10-20 montage and accompanying patient characteristics. Non-medicated subjects with clinically normal EEG are used as the normative population (n=1,167) while a group with a similar age distribution of medicated subjects with clinically abnormal EEG are used as the abnormal population (n=2,940). Parameters and properties of spectral coherence connectivity graphs are computed across frequency bands. We establish default mode networks (DMN) for the different populations on several frequency bands. We find that frequency bands differ across the populations more than specific graph properties. However, we find that there is an increased level of connectivity in the abnormal population. These results may lead to neural connectivity based diagnostic aides.
大型临床人群脑电图频谱连通性分析
本研究利用相干性和基于频谱图的方法,在大量人群的脑电图(EEG)中探索静息状态下的神经连通性。利用神经工程数据联盟(NEDC) EEG语料库,我们提取了10-20蒙太奇的EEG数据和伴随的患者特征。将临床脑电图正常的未用药受试者作为正常人群(n= 1167),将与临床脑电图异常用药受试者年龄分布相似的一组作为异常人群(n= 2940)。计算了谱相干连通性图各频段的参数和性质。我们在几个频带上为不同的人群建立了默认模式网络(DMN)。我们发现,不同种群的频带差异大于特定的图形属性。然而,我们发现,在异常人群中,连通性水平有所提高。这些结果可能导致基于神经连接的诊断辅助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信