Comparison of Feature Extraction Methods and Deep Learning Framework for Depth Map Recognition

P. Sykora, Patrik Kameneay, R. Hudec, M. Benco, M. Šinko
{"title":"Comparison of Feature Extraction Methods and Deep Learning Framework for Depth Map Recognition","authors":"P. Sykora, Patrik Kameneay, R. Hudec, M. Benco, M. Šinko","doi":"10.23919/NTSP.2018.8524109","DOIUrl":null,"url":null,"abstract":"In this paper a comparison between three feature extraction methods (Fourier Transform, Radon Transform, Canny Edge Filter) and Convolutional Neural Network is presented. These methods are tested on set of depth maps. The Microsoft Kinect camera is used for capturing the images. For the image classification the Support Vector Machine with Radial Basis Function kernel was used. The experimental results from each tested method are stored in confusion matrix. Each row in this matrix represents actual class of tested data and each column represents predicted class. The quality of the Convolutional Neural Networks features has been compared with traditional methods of feature extraction. From the experimental results, we have shown that the Convolutional Neural Network based deep learning framework achieve better classification performance than test feature extraction methods (Fourier Transform, Radon Transform, Canny Edge Filter).","PeriodicalId":177579,"journal":{"name":"2018 New Trends in Signal Processing (NTSP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 New Trends in Signal Processing (NTSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/NTSP.2018.8524109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper a comparison between three feature extraction methods (Fourier Transform, Radon Transform, Canny Edge Filter) and Convolutional Neural Network is presented. These methods are tested on set of depth maps. The Microsoft Kinect camera is used for capturing the images. For the image classification the Support Vector Machine with Radial Basis Function kernel was used. The experimental results from each tested method are stored in confusion matrix. Each row in this matrix represents actual class of tested data and each column represents predicted class. The quality of the Convolutional Neural Networks features has been compared with traditional methods of feature extraction. From the experimental results, we have shown that the Convolutional Neural Network based deep learning framework achieve better classification performance than test feature extraction methods (Fourier Transform, Radon Transform, Canny Edge Filter).
深度地图识别中特征提取方法与深度学习框架的比较
本文对傅里叶变换、Radon变换、Canny边缘滤波三种特征提取方法和卷积神经网络进行了比较。在一组深度图上对这些方法进行了测试。微软Kinect摄像头用于捕捉图像。采用径向基函数核支持向量机对图像进行分类。每种测试方法的实验结果存储在混淆矩阵中。这个矩阵中的每一行表示测试数据的实际类别,每一列表示预测的类别。将卷积神经网络的特征质量与传统的特征提取方法进行了比较。实验结果表明,基于卷积神经网络的深度学习框架比测试特征提取方法(傅里叶变换、Radon变换、Canny边缘滤波)具有更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信